I am working on a voting data and trying to show most voted two parties. Problem is I want them in columns as, "first_party", "first_votes", "second_party", "second_votes". But I cannot transform my data with grouping or slicing.
d_Buyuksehir_2019 %\>%
group_by(city)%\>%
top_n(2)%\>%
group_by(city, party)
no il party votes
1 Adana CHP 656704
1 Adana MHP 523751
2 Ankara CHP 1662209
2 Ankara AK PARTİ 1538410
3 Antalya CHP 714302
3 Antalya AK PARTİ 652882
4 Aydin CHP 368791
4 Aydin AK PARTİ 299056
5 Balikesi̇r AK PARTİ 375539
5 Balikesi̇rİ İYİ PARTİ 365333
I expected it like
example <- data.frame(
city = c("Adana","Ankara","Antalya","Balikesir"),
first_party = c("chp", "chp", "chp", "akp"),
first_votes = c(650000,160000,714000,375000),
second_party = c("mhp","akp","akp","iyi"),
second_votes = c(523000,1530000,600000,365000))
example
city first_party votes second_party second_party_votes
Adana chp 650000 mhp 523000
Ankara chp 160000 akp 1530000
Antalya chp 714000 akp 600000
Balikesir akp 375000 iyi 365000
The pivot_wider()
function from the tidyr package will work.
The first step is to rank the first and second for each city and then pivot
df <- read.table(header =TRUE, text = "no il party votes
1 Adana CHP 656704
1 Adana MHP 523751
2 Ankara CHP 1662209
2 Ankara AKP 1538410
3 Antalya CHP 714302
3 Antalya AKP 652882
4 Aydin CHP 368791
4 Aydin AKP 299056
5 Balikesi̇r AKP 375539
5 Balikesi̇r IYI 365333 ")
library(tidyr)
#add the rank of 1 or 2 to each city
#assumes the list is sorted by city and votes
df$rank <- c("first", "second")
pivot_wider(df, id_cols = c("no", "il"),
names_from = c("rank"), values_from = c("party", "votes"),
names_glue = "{rank}_{.value}", names_sort = TRUE)
# A tibble: 5 × 6
no il first_party second_party first_votes second_votes
<int> <chr> <chr> <chr> <int> <int>
1 1 Adana CHP MHP 656704 523751
2 2 Ankara CHP AKP 1662209 1538410
3 3 Antalya CHP AKP 714302 652882
4 4 Aydin CHP AKP 368791 299056
5 5 Balikesi̇r AKP IYI 375539 365333