#Start: Initialize values
#For each block lengths (BlockLengths) I will run 10 estimates (ThetaL). For each estimate, I simulate 50000 observarions (Obs). Each estimate is calculated on the basis of the blocklength.
Index=0 #Initializing Index.
ThetaL=10 #Number of estimations of Theta.
Obs=50000 #Sample size.
Grp=vector(length=7) #Initializing a vector of number of blocks. It is dependent on block lengths (see L:15)
Theta=matrix(data=0,nrow=ThetaL,ncol=7) #Initializing a matrix of the estimates of Thetas. There are 10 for each block length.
BlockLengths<-c(10,25,50,100,125,200,250) #Setting the block lengths
for (r in BlockLengths){
Index=Index+1
Grp[Index]=Obs/r
for (k in 1:ThetaL){
#Start: Constructing the sample
Y1<-matrix(data=0,nrow=Obs,ncol=2)
Y1[1,]<-runif(2,0,1)
Y1[1,1]<--log(-(Y1[1,1])^2 +1)
Y1[1,2]<--log(-(Y1[1,2])^2 +1)
for (i in 2:Obs)
{
Y1[i,1]<-Y1[i-1,2]
Y1[i,2]<-runif(1,0,1)
Y1[i,2]<--log(-(Y1[i,2])^2 +1)
}
X1 <- vector(length=Obs)
for (i in 1:Obs){
X1[i]<-max(Y1[i,])
}
#End: Constructing the sample
K=0 #K will counts number of blocks with at least one exceedance
for (t in 1:Grp[Index]){ #For loop from 1 to number of groups
a=0
for (j in (1+r*(t-1)):(t*r)){ #Loop for the sample within each group
if (X1[j]>quantile(X1,0.99)){ #If a value exceeds high threshold, we add 1 to some variable a
a=a+1
}
}
if(a>=1){ #For the group, if a is larger than 1, we have had a exceedance.
K=K+1 #Counts number of blocks with at least one exceedance.
}
}
N<-sum(X1>=quantile(X1,0.99)) #Summing number of exceedances
Theta[k,Index]<- (1/r) * ((log(1-K/Grp[Index])) / (log(1-N/Obs))) #Estimate
#Theta[k,Index]<-K/N
}
}
I have been running the above code without errors and it took me about 20 minutes, but I want to run the code for larger sample and more repetitions, which makes the run time absurdly large. I tried to only have the necessary part inside the loops to optimize it a little. Is it possible to optimize it even further or should I use another programming language as I've read R is bad for "for loop". Will vectorization help? In case, how can I vectorize the code?
First, you can define BlockLengths
before Grp
and Theta
as both of them depend on it's length:
Index = 0
ThetaL = 2
Obs = 10000
BlockLengths = c(10,25)
Grp = vector(length = length(BlockLengths))
Theta = matrix(data = 0, nrow = ThetaL, ncol = length(BlockLengths))
Obs: I decreased the size of the operation so that I could run it faster. With this specification, your original loop took 24.5 seconds.
Now, for the operation, there where three points where I could improve:
Obs
random numbers with runif()
. Then, the first column can be created as a lag of the second column. With only this alteration, the loop ran in 21.5 seconds (12% improvement).max
function with apply
. This alteration saved further 1.5 seconds (6% improvement).t
, get all the values of X1[(1+r*(t-1)):(t*r)]
, and run the condition on all of them at once (instead of using the second loop). The any(...)
does the same as your a>=1
. Furthermore, you can remove the first loop using lapply
vectorization function, then sum this boolean vector, yielding the same result as your combination of if(a>=1)
and K=K+1
. The usage of pipes (|>
) is just for better visualization of the order of operations. This by far is the more important alteration, saving more 18.4 seconds (75% improvement).for (r in BlockLengths){
Index = Index + 1
Grp[Index] = Obs/r
for (k in 1:ThetaL){
Y1 <- matrix(data = 0, nrow = Obs, ncol = 2)
Y1[,2] <- -log(-(runif(Obs))^2 + 1)
Y1[,1] <- c(-log(-(runif(1))^2 + 1), Y1[-Obs,2])
X1 <- apply(Y1, 1, max)
K <- lapply(1:Grp[Index], function(t){any(X1[(1+r*(t-1)):(t*r)] > quantile(X1,0.99))}) |> unlist() |> sum()
N <- sum(X1 >= quantile(X1, 0.99))
Theta[k,Index] <- (1/r) * ((log(1-K/Grp[Index])) / (log(1-N/Obs)))
}
}
Using set.seed()
I got the same results as your original loop.
A possible way to improve more is substituting the r
and k
loops with purrr::map function.