Search code examples
pythondeep-learningneural-networkconv-neural-network

TypeError: linear(): argument 'input' (position 1) must be Tensor, not Flatten


I am new to Neural Networks and I have the following N.N. in a python notebook below that takes in images as the input. I am trying to get it to run but I keep getting the following error: TypeError: linear(): argument 'input' (position 1) must be Tensor, not Flatten. (Please let me know if any additional information is needed).

class Network(nn.Module):
    def __init__(self):
        super(Network, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(600, 120)
        self.fc2 = nn.Linear(120, 2)
        self.fc3 = nn.Linear(2, 10)
    
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = nn.Flatten(x, 1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

model = Network()

I have looked at other sources where others have gotten a similar error but not the exact error that I got. At first I tried to see if making my neural network similar to how other had it but that did not seem to work.


Solution

  • You are using the wrong Flatten!

    There are two options:

    1. A "flatten layer": https://pytorch.org/docs/stable/generated/torch.nn.Flatten.html#torch.nn.Flatten

    2. The flatten function itself: https://pytorch.org/docs/stable/generated/torch.flatten.html

    In your network you are using the first, but you should be using the second! You are creating a flatten layer instead of applying the flatten transformation to your inputs.

    class Network(nn.Module):
        def __init__(self):
             super(Network, self).__init__()
             self.conv1 = nn.Conv2d(3, 6, 5)
             self.pool = nn.MaxPool2d(2, 2)
             self.conv2 = nn.Conv2d(6, 16, 5)
             self.fc1 = nn.Linear(600, 120)
             self.fc2 = nn.Linear(120, 2)
             self.fc3 = nn.Linear(2, 10)
    
         def forward(self, x):
             x = self.pool(F.relu(self.conv1(x)))
             x = self.pool(F.relu(self.conv2(x)))
             x = torch.flatten(x, 1)
             x = F.relu(self.fc1(x))
             x = F.relu(self.fc2(x))
             x = self.fc3(x)
             return x
    

    Or

    class Network(nn.Module):
        def __init__(self):
             super(Network, self).__init__()
             self.conv1 = nn.Conv2d(3, 6, 5)
             self.pool = nn.MaxPool2d(2, 2)
             self.conv2 = nn.Conv2d(6, 16, 5)
             self.fc1 = nn.Linear(600, 120)
             self.fc2 = nn.Linear(120, 2)
             self.fc3 = nn.Linear(2, 10)
             self.flatten = nn.Flatten(1)
    
         def forward(self, x):
             x = self.pool(F.relu(self.conv1(x)))
             x = self.pool(F.relu(self.conv2(x)))
             x = self.flatten(x)
             x = F.relu(self.fc1(x))
             x = F.relu(self.fc2(x))
             x = self.fc3(x)
             return x