I do have a json in the format of (but with even more/deeper nested objects)
{
"Group": {
"Group1": {
"GroupA": {
"value": "#fffff",
"type": "color"
},
"GroupB": {
"value": "#c2c2c2",
"type": "color"
},
"GroupC": {
"Group_XY": {
"value": "#aw13ma",
"type": "color"
}
}
},
"Group2":{
"GroupA": {
"value": "#ff123f",
"type": "color"
},
"GroupB": {
"value": "#fffff",
"type": "color"
},
"GroupD": {
"value": "#ababab",
"type": "color"
}
},
"Group3": {
"GroupA": {
"value": "#fffff",
"type": "color"
},
"GroupC": {
"Group_XY": {
"value": "#12a3ma",
"type": "color"
}
},
"GroupD": {
"value": "#fffff",
"type": "color"
}
},
"Group4": {
"GroupA": {
},
"GroupB": {
"value": "#c2c2c2",
"type": "color"
},
"GroupE": {
"Group_XX": {
"Group_A1": {
"value": "#12a3ma",
"type": "color"
}
}
}
}
}
}
what i want to achieve is a csv/table output to compare:
Group1 | Group2 | Group3 | Group4 | |||
---|---|---|---|---|---|---|
GroupA | #fffff | #ff123f | #fffff | |||
GroupB | #c2c2c2 | #fffff | #c2c2c2 | |||
GroupC | ||||||
Group_XY | #aw13ma | #12a3ma | ||||
GroupD | #fffff | |||||
GroupE | ||||||
Group_XX | ||||||
Group_A1 | #12a3ma |
so i figured that python and pandas might be the correct way to kick it off.
import pandas as pd
import json
with open('colorDate.json') as f:
data = json.load(f)
pd.json_normalize(data,max_level=0)
gets me
Group1 | Group2 | Group3 | Group4 |
---|---|---|---|
{'GroupA': {'value': '#fffff', 'type': 'color'... | {'GroupA': {'value': '#ff123f', 'type': 'color... | {'GroupA': {'value': '#fffff', 'type': 'color'... | {'GroupA': {}, 'GroupB': {'value': '#c2c2c2', ... |
now i need to transform the all the keys for the next level to rows?!
i don't care about the tool stack
So, why not use jq, then?
It can transform JSON with ease, and even generate your desired output format using the @csv
builtin and the --raw-output
(or -r
) option.
.Group | to_entries | reduce (
.[] | (.value | paths(objects) as $p | [$p, getpath($p).value]) + [.key]
) as [$path, $value, $column] ({}; ."\($path)"[$column] = $value)
| (keys | map(fromjson) | sort) as $paths
| ($paths | map(length) | max) as $width
| (map(keys[]) | unique) as $heads
| [(range($width) | null), $heads[]], ($paths[] as $path
| ($path | .[:-1] |= map(null)) + [range($path | $width - length) | null]
+ [."\($path)"[$heads[]]]
) | @csv
,,,"Group1","Group2","Group3","Group4"
"GroupA",,,"#fffff","#ff123f","#fffff",
"GroupB",,,"#c2c2c2","#fffff",,"#c2c2c2"
"GroupC",,,,,,
,"Group_XY",,"#aw13ma",,"#12a3ma",
"GroupD",,,,"#ababab","#fffff",
"GroupE",,,,,,
,"Group_XX",,,,,
,,"Group_A1",,,,"#12a3ma"
A personal suggestion: For better readability, I would "merge" those "blank" lines as they provide no additional information, while combining (and if necessary, duplicating) the path items on the row headers. For this, extend paths(objects)
to paths(objects | has("value"))
to only descend to items of value, and reveal the full path by changing ($path | .[:-1] |= map(null))
to just $path
:
.Group | to_entries | reduce (
.[] | (.value | paths(objects | has("value")) as $p | [$p, getpath($p).value]) + [.key]
) as [$path, $value, $column] ({}; ."\($path)"[$column] = $value)
| (keys | map(fromjson) | sort) as $paths
| ($paths | map(length) | max) as $width
| (map(keys[]) | unique) as $heads
| [(range($width) | null), $heads[]], ($paths[] as $path
| $path + [range($path | $width - length) | null]
+ [."\($path)"[$heads[]]]
) | @csv
,,,"Group1","Group2","Group3","Group4"
"GroupA",,,"#fffff","#ff123f","#fffff",
"GroupB",,,"#c2c2c2","#fffff",,"#c2c2c2"
"GroupC","Group_XY",,"#aw13ma",,"#12a3ma",
"GroupD",,,,"#ababab","#fffff",
"GroupE","Group_XX","Group_A1",,,,"#12a3ma"