i have the below posted list and it contais lists, so it is a list of lists, and i have a webservice that returns return jsonify(resultsDict)
. the problem i am facing is when i run the App i recieve either of the error messages posted below.
as shown in the code below, i tried to set dtype=np.float64
and dtype=object
, but each of them generates an error associated to it as shown below in the code.
please let me know how to fix it
attempt_1
resultsDict={
"extras": {
"pvTreatment":np.array(pvTreatment,dtype=np.float64).tolist(),
...
...
...
}
}
**error associated**:
ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (7,) + inhomogeneous part.
attempt_2
resultsDict = {
"extras": {
"pvTreatment":np.array(pvTreatment,dtype=object).tolist(),
...
...
...
}
}
**error associated**:
raise TypeError(f'Object of type {o.__class__.__name__} '
TypeError: Object of type float32 is not JSON serializable
If I try to make an array with two arrays that differ in length I get your kind of error:
In [186]: np.array([np.ones((3)), np.zeros((4))],float)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Input In [186], in <cell line: 1>()
----> 1 np.array([np.ones((3)), np.zeros((4))],float)
ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part.
I can make an object
dtype array:
In [187]: np.array([np.ones((3)), np.zeros((4))],object)
Out[187]: array([array([1., 1., 1.]), array([0., 0., 0., 0.])], dtype=object)
But when I use tolist
I get a list with two arrays:
In [188]: np.array([np.ones((3)), np.zeros((4))],object).tolist()
Out[188]: [array([1., 1., 1.]), array([0., 0., 0., 0.])]
Arrays are not JSON serializable.
If the inner arrays were changed to lists, we'd get a list of lists:
In [191]: np.array([np.ones((3)).tolist(), np.zeros((4)).tolist()],object).tolist()
Out[191]: [[1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]
For this kind of thing, avoid arrays - both for the outer list and the inner ones.