I would like to be able to control the type of compression used when partitioning (default is snappy).
import numpy.random
import pyarrow as pa
import pyarrow.dataset as ds
data = pa.table(
{
"day": numpy.random.randint(1, 31, size=100),
"month": numpy.random.randint(1, 12, size=100),
"year": [2000 + x // 10 for x in range(100)],
}
)
ds.write_dataset(
data,
"./tmp/partitioned",
format="parquet",
existing_data_behavior="delete_matching",
partitioning=ds.partitioning(
pa.schema(
[
("year", pa.int16()),
]
),
),
)
It is not clear to me, from the doc, if that's actually possible
There is an option to specify the file options.
file_options
pyarrow.dataset.FileWriteOptions, optional
FileFormat specific write options, created using the FileFormat.make_write_options() function.
You can use any of the compression options mentioned in the docs - snappy, gzip, brotli, zstd, lz4, none
Below code writes dataset using brotli compression.
import numpy.random
import pyarrow as pa
import pyarrow.dataset as ds
data = pa.table(
{
"day": numpy.random.randint(1, 31, size=100),
"month": numpy.random.randint(1, 12, size=100),
"year": [2000 + x // 10 for x in range(100)],
}
)
file_options = ds.ParquetFileFormat().make_write_options(compression='brotli')
ds.write_dataset(
data,
"./tmp/partitioned",
format="parquet",
existing_data_behavior="delete_matching",
file_options=file_options,
partitioning=ds.partitioning(
pa.schema(
[
("year", pa.int16()),
]
),
),
)