I have these sample dataframes:
tdf1 = pd.DataFrame([{"id": 1, "val": 4}, {"id": 2, "val": 5}, {"id": 3, "val": 6}, {"id": pd.NA, "val": 7}, {"id": 4, "val": 8}])
tdf2 = pd.DataFrame([{"some_id": 1, "name": "Josh"}, {"some_id": 3, "name": "Jake"}])
pd.merge(tdf1, tdf2, how="left", left_on="id", right_on="some_id").head()
And the merge works perfectly. Now if I want to the same using Dask:
dd_tdf1 = dd.from_pandas(tdf1, npartitions=10)
dd_tdf2 = dd.from_pandas(tdf2, npartitions=10)
dd_tdf2.merge(dd_tdf1, left_on="some_id", right_on="id", how="right", npartitions=10).compute(scheduler="threads").head()
I get the following error:
File /opt/conda/lib/python3.10/site-packages/pandas/core/reshape/merge.py:1585, in <genexpr>(.0)
1581 return _get_no_sort_one_missing_indexer(left_n, False)
1583 # get left & right join labels and num. of levels at each location
1584 mapped = (
-> 1585 _factorize_keys(left_keys[n], right_keys[n], sort=sort, how=how)
1586 for n in range(len(left_keys))
1587 )
1588 zipped = zip(*mapped)
1589 llab, rlab, shape = (list(x) for x in zipped)
File /opt/conda/lib/python3.10/site-packages/pandas/core/reshape/merge.py:2313, in _factorize_keys(lk, rk, sort, how)
2309 if is_integer_dtype(lk.dtype) and is_integer_dtype(rk.dtype):
2310 # GH#23917 TODO: needs tests for case where lk is integer-dtype
2311 # and rk is datetime-dtype
2312 klass = libhashtable.Int64Factorizer
-> 2313 lk = ensure_int64(np.asarray(lk))
2314 rk = ensure_int64(np.asarray(rk))
2316 elif needs_i8_conversion(lk.dtype) and is_dtype_equal(lk.dtype, rk.dtype):
2317 # GH#23917 TODO: Needs tests for non-matching dtypes
File pandas/_libs/algos_common_helper.pxi:86, in pandas._libs.algos.ensure_int64()
TypeError: int() argument must be a string, a bytes-like object or a real number, not 'NAType'
Does anyone has an idea of why this might be happening?
This expands on the comments by @Michael Delgado. The tricky thing is that int64
does not support the pd.NA
. You can see that this error is raised by pandas
via trying:
tdf1['id'] = tdf1['id'].astype('int64')
# TypeError: int() argument must be a string, a bytes-like object or a real number, not 'NAType'
One fix is to make sure that the dtype
of the id
is set to Int64
(which supports pd.NA
):
tdf1['id'] = tdf1['id'].astype('Int64')
tdf2['some_id'] = tdf2['some_id'].astype('Int64')
Once the dtypes are the same, you can run the dask
snippet and obtain the desired merge.