I have this code.
n_nodes = len(data_x)
X = np.zeros((n_nodes, n_nodes))
for i in range(n_nodes):
for j in range(n_nodes):
X[i, j] = data_x[i] ** j
I want to do the same task with no loops used at all. How can I do that with NumPy functions?
I'd suggest
data_x[:,None]**np.arange(n_nodes)
A check
In [17]: data_x = np.array((3,5,7,4,6))
...: n_nodes = len(data_x)
...: X = np.zeros((n_nodes, n_nodes))
...:
...: for i in range(n_nodes):
...: for j in range(n_nodes):
...: X[i, j] = data_x[i] ** j
...: print(X)
...: print('-----------')
...: print(data_x[:,None]**np.arange(n_nodes))
[[1.000e+00 3.000e+00 9.000e+00 2.700e+01 8.100e+01]
[1.000e+00 5.000e+00 2.500e+01 1.250e+02 6.250e+02]
[1.000e+00 7.000e+00 4.900e+01 3.430e+02 2.401e+03]
[1.000e+00 4.000e+00 1.600e+01 6.400e+01 2.560e+02]
[1.000e+00 6.000e+00 3.600e+01 2.160e+02 1.296e+03]]
-----------
[[ 1 3 9 27 81]
[ 1 5 25 125 625]
[ 1 7 49 343 2401]
[ 1 4 16 64 256]
[ 1 6 36 216 1296]]
Some timing
In [18]: %timeit data_x[:,None]**np.arange(n_nodes)
2.18 µs ± 7.49 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)
In [19]: %%timeit
...: for i in range(n_nodes):
...: for j in range(n_nodes):
...: X[i, j] = data_x[i] ** j
10.9 µs ± 107 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)