I have one data frame df which has one column. I want to extract a words after a fix combination of words & special character, also need a count of extracted words in that particular cell.
For example: (Most Recent Alarm Trigger)','valueString':'Tilt Sensor',(Most Recent Alarm Trigger)','valueString':'Hello world',(Most Recent Alarm Trigger)','valueString':'ABC',
Now from above line I want to extract any words in between commas after "(Most Recent Alarm Trigger)','valueString':"
So, in that case I want only 'Tilt Sensor' and its count in that particular cell.
I don't need 'Hello world' or 'ABC' as it comes 2nd or 3rd. Basically I want first search words.
Below is my df:-
import re
import pandas as pd
import numpy as np
data = {'product_name': ["[{'name':'Trigger Cause Status (Most Recent Alarm Trigger)','valueString':'Tilt Sensor','packetType':'enumerated','leastSigBit':440,,'Tilt Sensor','mostSigBit':447},{'name':'User Set Year (Most Recent Alarm Trigger)', (Most Recent Alarm Trigger)','valueString':'Band','valueNumber':2022.0,'units':'Undefined / Not Used','packetType':'Tilt Sensor','leastSigBit':432,'mostSigBit':439},{'name':'User Set Month,(Most Recent Alarm Trigger)','valueString':'Back space',{'name':'User Set Minute (Most Recent Alarm Trigger)','valueNumber':16.0,'units':'min','packetType':'unsigned','leastSigBit':400,'mostSigBit':407},'Tilt Sensor',{'name':'User Set Second (Most Recent Alarm Trigger)','valueNumber':36.0,'units':'s','packetType':'unsigned','leastSigBit':392,'mostSigBit':399}]",
"[{'name':'Trigger Cause Status (Most Recent Alarm Trigger)','valueString':'Volumetric Sensor','packetType':'enumerated','leastSigBit':440,'mostSigBit':447},{'name':'User Set Year (Most Recent Alarm Trigger)','valueNumber':2022.0,'units':'(Most Recent Alarm Trigger)','valueString':'Being human','packetType':'unsigned','leastSigBit':432,'mostSigBit':439},{'name':'User Set Month (Most Recent Alarm Trigger)','valueNumber':6.0,'(Most Recent Alarm Trigger)','valueString':'Hello'':'Month','Volumetric Sensor','packetType':'unsigned','leastSigBit':424,'mostSigBit':431},{'name':'User Set Day (Most Recent Alarm ]"]}
df = pd.DataFrame(data)
df
I tried regex or apply method but not getting what I want.
Below are some code which I have tried,
df["Extract"] = df["product_name"].apply(lambda st: st[st.find("(Most Recent Alarm Trigger)','valueString':")+1:st.find(",")])
df['Title'] = df.product_name.str.extract(r'"(Most Recent Alarm Trigger)','valueString':'"\s*([^\.]*)\s*\.', expand=False)
Below is my expected result:
data = {'product_name': ["[{'name':'Trigger Cause Status (Most Recent Alarm Trigger)','valueString':'Tilt Sensor','packetType':'enumerated','leastSigBit':440,,'Tilt Sensor','mostSigBit':447},{'name':'User Set Year (Most Recent Alarm Trigger)', (Most Recent Alarm Trigger)','valueString':'Band','valueNumber':2022.0,'units':'Undefined / Not Used','packetType':'Tilt Sensor','leastSigBit':432,'mostSigBit':439},{'name':'User Set Month,(Most Recent Alarm Trigger)','valueString':'Back space',{'name':'User Set Minute (Most Recent Alarm Trigger)','valueNumber':16.0,'units':'min','packetType':'unsigned','leastSigBit':400,'mostSigBit':407},'Tilt Sensor',{'name':'User Set Second (Most Recent Alarm Trigger)','valueNumber':36.0,'units':'s','packetType':'unsigned','leastSigBit':392,'mostSigBit':399}]",
"[{'name':'Trigger Cause Status (Most Recent Alarm Trigger)','valueString':'Volumetric Sensor','packetType':'enumerated','leastSigBit':440,'mostSigBit':447},{'name':'User Set Year (Most Recent Alarm Trigger)','valueNumber':2022.0,'units':'(Most Recent Alarm Trigger)','valueString':'Being human','packetType':'unsigned','leastSigBit':432,'mostSigBit':439},{'name':'User Set Month (Most Recent Alarm Trigger)','valueNumber':6.0,'(Most Recent Alarm Trigger)','valueString':'Hello'':'Month','Volumetric Sensor','packetType':'unsigned','leastSigBit':424,'mostSigBit':431},{'name':'User Set Day (Most Recent Alarm ]"],
'Extarct': ['Tilt Sensor','Volumetric Sensor'],'Count': [4,2]}
df = pd.DataFrame(data)
df
One solution could be as follows:
Series.str.extract
to get the first match between \'valueString\':\'
and \',
.df.apply
with a lambda function for each row (axis=1
) to get a count for each value now stored in df.Extract
inside the appropriate product_name
string.import pandas as pd
# also adding the string from your comment
data = {'product_name': ["[{'name':'Trigger Cause Status (Most Recent Alarm Trigger)','valueString':'Tilt Sensor','packetType':'enumerated','leastSigBit':440,,'Tilt Sensor','mostSigBit':447},{'name':'User Set Year (Most Recent Alarm Trigger)', (Most Recent Alarm Trigger)','valueString':'Band','valueNumber':2022.0,'units':'Undefined / Not Used','packetType':'Tilt Sensor','leastSigBit':432,'mostSigBit':439},{'name':'User Set Month,(Most Recent Alarm Trigger)','valueString':'Back space',{'name':'User Set Minute (Most Recent Alarm Trigger)','valueNumber':16.0,'units':'min','packetType':'unsigned','leastSigBit':400,'mostSigBit':407},'Tilt Sensor',{'name':'User Set Second (Most Recent Alarm Trigger)','valueNumber':36.0,'units':'s','packetType':'unsigned','leastSigBit':392,'mostSigBit':399}]",
"[{'name':'Trigger Cause Status (Most Recent Alarm Trigger)','valueString':'Volumetric Sensor','packetType':'enumerated','leastSigBit':440,'mostSigBit':447},{'name':'User Set Year (Most Recent Alarm Trigger)','valueNumber':2022.0,'units':'(Most Recent Alarm Trigger)','valueString':'Being human','packetType':'unsigned','leastSigBit':432,'mostSigBit':439},{'name':'User Set Month (Most Recent Alarm Trigger)','valueNumber':6.0,'(Most Recent Alarm Trigger)','valueString':'Hello'':'Month','Volumetric Sensor','packetType':'unsigned','leastSigBit':424,'mostSigBit':431},{'name':'User Set Day (Most Recent Alarm ]",
"[{'name':'Power Mode Quality Factor','valueString':'Power Mode Undefined','valueString':'Finally',Trigger Cause Status (Most Recent Alarm Trigger)','valueString':'No Trigger (Event Store Empty)',}]"]}
df = pd.DataFrame(data)
df['Extract'] = df.product_name.str.extract(
r'\(Most Recent Alarm Trigger\)\',\'valueString\':\'(.*?)\',')
# N.B. We're using the question mark to make the search for '.*' lazy
df['Count'] = df.apply(lambda row: row.product_name.count(row.Extract), axis=1)
print(df.iloc[:,1:])
Extract Count
0 Tilt Sensor 4
1 Volumetric Sensor 2
2 No Trigger (Event Store Empty) 1
N.B. If it is possible for str.extract
to find no match, you'll end up with NaN
values in df.Extract
. If so, this will cause an error for df.apply(lambda row: row.product_name.count(row.Extract), axis=1)
(since it is expecting a string
). To avoid this, you could use:
df['Count'] = df.apply(lambda row: row.product_name.count(row.Extract)
if isinstance(row.Extract,str) else 0, axis=1)