I'd need to groupby and aggregate dataframe.
Some columns have specific aggregation function, for the rest I'd like to use first
.
I just don't want to hardcode the rest of column names, because it can differ by case. Do you have any elegant idea how to achieve that?
import pandas as pd
df = pd.DataFrame({"col1": [1,2,3,4,5],
"col2": ["aa","aa","bb","bb","cc"],
"col3": ["b","b","b","b","b"],
"col4": ["c","c","c","c","c"],
"col5": [11,12,13,14,15]}
)
df.groupby(["col2"]).agg({
"col1": "mean",
"col5": "max",
"col3": "first",
"col4": "first"
})
output:
col1 col5 col3 col4
col2
aa 1.5 12 b c
bb 3.5 14 b c
cc 5.0 15 b c
but I don't want to explicitly specify
"col3": "first",
"col4": "first"
Simply all the columns not used in groupby
and agg
should be aggregated with default function.
You can create dictionary dynamic - first define non first
aggregations and then for all columns without column used for groupby
and keys from d
:
d = {"col1": "mean", "col5": "max"}
agg = {**d, **dict.fromkeys(df.columns.difference(['col2'] + list(d.keys())), 'first')}
print (agg)
{'col1': 'mean', 'col5': 'max', 'col3': 'first', 'col4': 'first'}
Or create dictionary by all values without groupby column(s) and set different aggregations:
agg = dict.fromkeys(df.columns.difference(['col2']), 'first')
agg['col1'] = 'mean'
agg['col5'] = 'max'
print (agg)
{'col1': 'mean', 'col3': 'first', 'col4': 'first', 'col5': 'max'}
df = df.groupby(["col2"]).agg(agg)
print (df)
col1 col5 col3 col4
col2
aa 1.5 12 b c
bb 3.5 14 b c
cc 5.0 15 b c