Search code examples
rggplot2plotgeom-bargeom-text

How to add percentage labels in proper positions on ggplot bar plot with geom_text when using facet wrap and remove empty space between bars?


I am trying to add percentage labels to a bar plot using ggplot geom_text but the labels are not in the correct positions. I would like them placed on top of each bar. This question is similar to something I asked about a month ago here. The answer provided was great but now I am trying to do the same thing but while using facet_wrap by a group and it is not working and I can't figure out what I need to adjust.

Using one of the answers in my other question, this is the code and resulting plot for my original figure:

ggplot(FO_adult, aes(x=reorder(prey_name, -Fi), Fi, fill=prey_name)) +
  geom_bar(stat = "identity") +
  geom_text(data = FO_adult %>%
              mutate(label = scales::percent(round(Fi, digits=3)),
                     prey_num = as.numeric(reorder(prey_name, -Fi))) %>%
              group_by(label) %>%
              summarize(n = n(), 
                        label = first(label), 
                        Fi = first(Fi),
                        prey_num = first(prey_num), 
                        prey_name = first(prey_name)),
            aes(x = prey_num + (n - 1)/2, y = Fi, label = label), vjust = -0.5) +
  ggtitle("Frequency of Occurrence") +
  labs(x="Prey", fill = "Prey Name", y = "Frequency of Occurrence (%)") + 
  scale_fill_igv(palette = "default") +
  theme_bw() +
  theme(legend.position = "right", 
        plot.title = element_text(hjust=0.5),
        legend.background = element_rect(fill = "white", color = 1),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.ticks.length = unit(0.2,"cm")) +
  scale_y_continuous(expand = expansion(mult = c(0,0.1)), labels=scales::percent)

This is my original plot: original plot

As shown, I would like the bars to have percentage at the top. Bars (prey) that have the same value, should only have it printed once to avoid overcrowding (this part is what I haven't been able to properly adjust).

This is my data when attempting to plot something similar but faceting by group (Season):

structure(list(prey_name = structure(c(2L, 2L, 1L, 1L, 1L, 9L, 
9L, 5L, 5L, 5L, 3L, 3L, 3L, 10L, 10L, 14L, 12L, 15L, 4L, 4L, 
6L, 6L, 16L, 16L, 13L, 17L, 11L, 11L, 11L, 18L, 8L, 8L, 8L, 7L, 
19L, 20L), levels = c("Byths", "Amphipod", "Chiro.Pupae", "Daphnia", 
"Chiro.Larvae", "Dreissena", "Sphaeriidae", "Isopod", "Chiro.Adult", 
"Chironomidae", "Goby", "Copepoda", "Eurycercidae", "Chydoridae", 
"Cyclopoid", "EggMass", "Fish.Eggs", "Hemimysis", "Trichopteran", 
"UID.Fish"), class = "factor", scores = structure(c(Amphipod = -0.0894736842105263, 
Byths = -0.171929824561404, Chiro.Adult = -0.0263157894736842, 
Chiro.Larvae = -0.0526315789473684, Chiro.Pupae = -0.0842105263157895, 
Chironomidae = -0.0263157894736842, Chydoridae = -0.0105263157894737, 
Copepoda = -0.0210526315789474, Cyclopoid = -0.0105263157894737, 
Daphnia = -0.0736842105263158, Dreissena = -0.0421052631578947, 
EggMass = -0.0105263157894737, Eurycercidae = -0.0210526315789474, 
Fish.Eggs = -0.0105263157894737, Goby = -0.0245614035087719, 
Hemimysis = -0.0105263157894737, Isopod = -0.0315789473684211, 
Sphaeriidae = -0.0421052631578947, Trichopteran = -0.0105263157894737, 
UID.Fish = -0.0105263157894737), dim = 20L, dimnames = list(c("Amphipod", 
"Byths", "Chiro.Adult", "Chiro.Larvae", "Chiro.Pupae", "Chironomidae", 
"Chydoridae", "Copepoda", "Cyclopoid", "Daphnia", "Dreissena", 
"EggMass", "Eurycercidae", "Fish.Eggs", "Goby", "Hemimysis", 
"Isopod", "Sphaeriidae", "Trichopteran", "UID.Fish")))), Season = structure(c(1L, 
2L, 1L, 2L, 3L, 1L, 2L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 3L, 1L, 1L, 
1L, 1L, 2L, 1L, 2L, 1L, 2L, 3L, 1L, 1L, 2L, 3L, 2L, 1L, 2L, 3L, 
1L, 1L, 1L), levels = c("Pre Hypoxia", "Peak Hypoxia", "Post Hypoxia"
), class = "factor"), Fi = c(0.105263157894737, 0.0736842105263158, 
0.273684210526316, 0.2, 0.0421052631578947, 0.0421052631578947, 
0.0105263157894737, 0.0842105263157895, 0.0526315789473684, 0.0210526315789474, 
0.210526315789474, 0.0315789473684211, 0.0105263157894737, 0.0421052631578947, 
0.0105263157894737, 0.0105263157894737, 0.0210526315789474, 0.0105263157894737, 
0.136842105263158, 0.0105263157894737, 0.0421052631578947, 0.0421052631578947, 
0.0105263157894737, 0.0105263157894737, 0.0210526315789474, 0.0105263157894737, 
0.0315789473684211, 0.0210526315789474, 0.0210526315789474, 0.0105263157894737, 
0.0421052631578947, 0.0105263157894737, 0.0421052631578947, 0.0421052631578947, 
0.0105263157894737, 0.0105263157894737)), class = c("grouped_df", 
"tbl_df", "tbl", "data.frame"), row.names = c(NA, -36L), groups = structure(list(
    prey_name = structure(1:20, levels = c("Byths", "Amphipod", 
    "Chiro.Pupae", "Daphnia", "Chiro.Larvae", "Dreissena", "Sphaeriidae", 
    "Isopod", "Chiro.Adult", "Chironomidae", "Goby", "Copepoda", 
    "Eurycercidae", "Chydoridae", "Cyclopoid", "EggMass", "Fish.Eggs", 
    "Hemimysis", "Trichopteran", "UID.Fish"), scores = structure(c(Amphipod = -0.0894736842105263, 
    Byths = -0.171929824561404, Chiro.Adult = -0.0263157894736842, 
    Chiro.Larvae = -0.0526315789473684, Chiro.Pupae = -0.0842105263157895, 
    Chironomidae = -0.0263157894736842, Chydoridae = -0.0105263157894737, 
    Copepoda = -0.0210526315789474, Cyclopoid = -0.0105263157894737, 
    Daphnia = -0.0736842105263158, Dreissena = -0.0421052631578947, 
    EggMass = -0.0105263157894737, Eurycercidae = -0.0210526315789474, 
    Fish.Eggs = -0.0105263157894737, Goby = -0.0245614035087719, 
    Hemimysis = -0.0105263157894737, Isopod = -0.0315789473684211, 
    Sphaeriidae = -0.0421052631578947, Trichopteran = -0.0105263157894737, 
    UID.Fish = -0.0105263157894737), dim = 20L, dimnames = list(
        c("Amphipod", "Byths", "Chiro.Adult", "Chiro.Larvae", 
        "Chiro.Pupae", "Chironomidae", "Chydoridae", "Copepoda", 
        "Cyclopoid", "Daphnia", "Dreissena", "EggMass", "Eurycercidae", 
        "Fish.Eggs", "Goby", "Hemimysis", "Isopod", "Sphaeriidae", 
        "Trichopteran", "UID.Fish"))), class = "factor"), .rows = structure(list(
        3:5, 1:2, 11:13, 19:20, 8:10, 21:22, 34L, 31:33, 6:7, 
        14:15, 27:29, 17L, 25L, 16L, 18L, 23:24, 26L, 30L, 35L, 
        36L), ptype = integer(0), class = c("vctrs_list_of", 
    "vctrs_vctr", "list"))), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -20L), .drop = TRUE))

For my new plot, I tried:

ggplot(FO_adult1, aes(x=reorder(prey_name, -Fi), Fi, fill=prey_name)) +
  geom_bar(stat = "identity") +
  facet_wrap(~ Season) +
  geom_text(data = FO_adult1 %>%
              mutate(label = scales::percent(round(Fi, digits=2)),
                     prey_num = as.numeric(reorder(prey_name, -Fi))) %>%
              group_by(label, Season) %>%
              summarize(n = n(), 
                        label = first(label), 
                        Fi = first(Fi),
                        prey_num = first(prey_num), 
                        prey_name = first(prey_name)),
            aes(x = prey_num + (n - 1)/2, y = Fi, label = label), 
            vjust = -0.5
            ) +
  ggtitle("Frequency of Occurrence") +
  labs(x="Prey", fill = "Prey Name", y = "Frequency of Occurrence (%)") + 
  scale_fill_igv(palette = "default") +
  theme_bw() +
  theme(legend.position = "right", 
        plot.title = element_text(hjust=0.5),
        legend.background = element_rect(fill = "white", color = 1),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.ticks.length = unit(0.2,"cm")) +
  scale_y_continuous(expand = expansion(mult = c(0,0.1)), labels=scales::percent)

Plots: plot I need help with

I tried using the code I used for my original plot but I am not sure what I need to tweak. My biggest hurdle is getting only one percentage label for prey with the same percentage. I would also like to get rid of the empty space/empty bars and plot the groups in descending order if possible (but this is not vital since that would cause each season to be plotted in a different order - but I would like to see what it looks like).

Thank you!


Solution

  • This is a bit trickier, but again can be handled using data manipulation. You need to work out the positions after first grouping by Season

    ggplot(FO_adult %>% 
             group_by(Season) %>%
             arrange(-Fi, by_group = TRUE) %>%
             mutate(prey_no = seq_along(Fi)) %>%
             ungroup(), 
           aes(x = prey_no, Fi, fill = reorder(prey_name, -Fi))) +
      geom_col() +
      facet_grid(Season~., scales = 'free_x') +
      geom_text(data = . %>%
                  mutate(label = round(Fi, digits = 3)) %>%
                  group_by(label, Season) %>%
                  summarize(n = n(), 
                            label = first(label), 
                            Fi = first(Fi),
                            prey_no = first(prey_no), 
                            prey_name = first(prey_name)),
                aes(x = prey_no + (n - 1)/2, y = Fi, label = label), 
                vjust = -0.5,
                check_overlap = TRUE) +
      ggtitle("Frequency of Occurrence") +
      labs(x="Prey", fill = "Prey Name", y = "Frequency of Occurrence (%)", 
           caption = "Source: DNR Diet Data") + 
      ggsci::scale_fill_igv(palette = "default") +
      theme_bw() +
      theme(legend.position = "right", 
            plot.title = element_text(hjust=0.5),
            legend.background = element_rect(fill = "white", color = 1),
            axis.text.x = element_blank(),
            axis.ticks.x = element_blank(),
            axis.ticks.length = unit(0.2,"cm")) +
      scale_y_continuous(expand = expansion(mult = c(0,0.1)))
    

    enter image description here