Name | yr |
---|---|
Dave | 2019 |
Dave | 2020 |
stu | 2019 |
stu | 2021 |
and I want to result like
Name | 2019_yr | 2020_yr | 2021_yr |
---|---|---|---|
Dave. | 1. | 1. | 0 |
stu. | 1. | 0. | 1 |
I tried to do use get_dummies but the result is like
Name | yr_2018 | yr_2019 | yr_2021 | yr_2022 |
---|---|---|---|---|
Dave | 0 | 1 | 0 | 0 |
Dave | 1 | 0 | 0 | 0 |
stu | 0 | 0 | 0 | 1 |
stu | 0 | 0 | 1 | 0 |
If need 0, 1
ouput is necessary aggregate max
:
#Name is column
df = pd.get_dummies(df.set_index('Name')).groupby('Name').max()
#Name is index
df = pd.get_dummies(df).groupby('Name').max()
Or:
df = pd.crosstab(df['Name'], df['yr']).add_suffix('_yr').clip(upper=1)