I have a plot that is spread heavily on the x-axis and Plotly gives me in the default setting only a few barely visible thin lines. So my question is:
I have tried already getting them more visible by using log instead of a linear axis but apparently this does not work (Setting width of bars (linear and log))
Edit: This here is the raw data (from the Pandas Dataset):
Records Iteration Type File Size
639 25000 13 Compressed 26671856
633 25000 10 Compressed 26434058
619 25000 3 Compressed 23342981
620 25000 4 Original 25459652
621 25000 4 Compressed 24485461
.. ... ... ... ...
412 10 14 Original 7211
411 10 13 Compressed 5411
410 10 13 Original 7211
409 10 12 Compressed 5264
389 10 2 Compressed 5388
However what is actually used in this Use-Case is mainly the grouped view:
Records
10 212349
50 6047089
100 13464177
123 10184362
125 10357818
250 20799432
500 41547840
750 75840787
1000 130690551
2500 270894964
5000 830707983
10000 3045818996
12500 1159898272
15000 3139884222
25000 871287571
this can be easily done using facet_col
data=[[10 , 212349],
[50, 6047089],
[100, 13464177],
[123, 10184362],
[125, 10357818],
[250, 20799432],
[500, 41547840],
[750, 75840787],
[1000 , 130690551],
[2500 , 270894964],
[5000 , 830707983],
[10000, 3045818996],
[12500, 1159898272],
[15000, 3139884222],
[25000, 871287571]]
df = pd.DataFrame(data, columns=["record", "count"])
considering the above data
fig = px.bar(df, x='record', y='count', facet_col='record')
# the following line force the subplot to have different x ranges
fig.update_xaxes(matches=None)
# the following line delete the title of the subplots since they represent same thing as x label
fig.for_each_annotation(lambda a: a.update(text=""))
fig.show()