I submit my job using slurm, at the beginning, everything works well. After adding a Rscript to perform a simple filtering, the system load average suddenly boost up to 1000+, this is quite abnormal. I've tring to search through Google, but find noting. My code showed as followed:
#!/bin/bash
#SBATCH --job-name=gtool
#SBATCH --partition=Compute
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH -a 1-22
for file in output/impute2/data_chr"${SLURM_ARRAY_TASK_ID}".*impute2
do
echo "$file" start!
# file prefix
foo=$(echo "$file" | awk -F "/" '{print $NF}' | awk -F . '{print $1"."$2}')
# use R for subset ID
Rscript src/detect.impute.snp.r "$file"
# gtool subset
gtool -S \
--g "$file" \
--s output/pre_phasing/chr"${SLURM_ARRAY_TASK_ID}".sample \
--og output/impute2_subset/"$foo".gen \
--inclusion output/impute2_subset/"$foo".SNPID.txt
# gtool GEN to PED
gtool -G \
--g output/impute2_subset/"$foo".gen \
--s output/pre_phasing/chr"${SLURM_ARRAY_TASK_ID}".sample \
--ped output/impute2_subset_2_PLINK/"$foo".impute2.ped \
--map output/impute2_subset_2_PLINK/"$foo".impute2.map \
--chr "${SLURM_ARRAY_TASK_ID}" \
--snp
echo "$file" fin!
done
Rscipt:
options(tidyverse.quiet = TRUE)
options(readr.show_col_types = FALSE)
library("tidyverse")
args <- commandArgs(T)
fn <- args[1]
d <- read_delim(fn,
col_names = F,
delim = " ",
col_select = c(2, 4, 5))
fn.out <- str_sub(last(str_split(fn,"/")[[1]]), 1, -9)
d %>% mutate(len1 = nchar(X4),
len2 = nchar(X5)) %>%
arrange(desc(X4), desc(X5)) %>%
filter(len1==1, len2 == 1) %>%
select(X2) %>%
write_tsv(file = str_c("output/impute2_subset/", fn.out,".SNPID.txt"),
col_names = F)
scontrol also show that my job only use one CPU:
JobId=4873 ArrayJobId=4872 ArrayTaskId=1 JobName=gtool
......
NodeList=localhost
BatchHost=localhost
NumNodes=1 NumCPUs=2 NumTasks=1 CPUs/Task=1 ReqB:S:C:T=0:0:*:*
......
R and gtool are using single thread and didn't provide a thread parameter, --ntasks
also set to 1, where may the holes are?
Some libraries used by R
and/or gtools
like MKL
, BLIS
or OpenBLAS
might be configured system-wise to use all cores of the node and not detect that Slurm only allocated one CPU. You can try to add
export OMP_NUM_THREADS=1
export BLIS_NUM_THREADS=1
export MKL_NUM_THREADS=1
export OPENBLAS_NUM_THREADS=1
in your submission script just before the for
loop..