Search code examples
llvm-ir

How do I do jumps to a label in an enclosing function in LLVM IR?


I want to do an LLVM compiler for a very old language, PL/M. This has some peculiar features, not least of which is having nested functions with the ability to jump out of an enclosing function. In pseudocode:

toplevel() {
  nested() {
    if (something)
      goto label;
  }

  nested();

label:
  print("finished!");
}

The constraints here are:

  • you can only jump into the top-level function, luckily
  • the stack does get unwound (the language does not support destructors, so this is easy)
  • you do not have to have executed the statement at label before jumping (so the naive setjmp/longjmp method doesn't work).
  • code at label can be executed normally, i.e. it's not like catch

LLVM has a number of non-local jump mechanisms, such as the exception handling system, but I've never used that. Can this be implemented using LLVM exceptions, or are they not suitable for this? Is there an easier way?


Solution

  • If you want the stack to get unwound, you'll likely want it to be in a separate function, at least a separate LLVM IR function. (The only real exception is if your language does not have a construct like C's "alloca()" and you don't allow calling a nested function by address in which case you could inline it.)

    That part of the problem you mentioned, jumping out of an enclosing function, is best handled by having some way for the callee to communicate "how it exited" to the caller, and the caller having a "switch()" on that value. You could stick it in the return value (if it already returns a value, make it a struct of both values), you could add a pointer parameter that it writes to, you could add it a thread-local global variable and fill that in before calling longjmp, or you could use exceptions.

    Exceptions, they're complex (I can't describe how to make them work offhand but the docs are here: https://llvm.org/docs/ExceptionHandling.html ) and slow when the exception path is taken, and really intended for exceptional situations, not for normal code. Setjmp/longjmp does the same thing as exceptions except simpler to use and without the performance trade-off when executed, but unfortunately there are miscompiles in LLVM which you need will be the one to fix if you start using them in earnest (see the postscript at the end of the answer).

    Those two options cover the ways you can do it without changing the function signature, which may be necessary if your language allows the address to be taken then called later.

    If you do need to take the address of nested, then LLVM supports trampolines. See https://llvm.org/docs/LangRef.html#trampoline-intrinsics . Trampolines solve the problem of accessing the local variables of the calling function from the callee, even when the function is called by address.

    PS. LLVM miscompiles setjmp/longjmp today. The current model is that a call to setjmp may return twice, and only functions with the returns_twice attribute may return twice. Note that this doesn't affect the whole call stack, only the direct caller of a function that returns twice has to deal with the twice-returning call-- just because function F calls setjmp does not mean that F itself can return twice. So far, so good.

    The problem is that in a function with a setjmp, all function calls may themselves call longjmp. I'd say "unless proven otherwise" as with all things in optimizers, but there is no attribute in LLVM doesnotlongjmp or any code within LLVM that attempts to answer the question of whether a function could call longjmp. Adding that would be a good optimization, but it's a separate issue from the miscompile.

    If you have code like this pseudo-code:

      %entry block:
        allocate val
        val <- 0
        setjmpret <- call setjmp
        br i1 setjmpret, %first setjmp return block, %second setjmp return block
      %first setjmp return block:
        val <- 1;
        call foo();
        goto after;
      %second setjmp return block:
        call print(val);
        goto after;
      %after:
        return
    

    The control flow graph shows that is no path from val <- 0 to val <- 1 to print(val). The only path with "print(val)" has "val <- 0" before it therefore constant propagation may turn print(val) into print(0). The problem here is a missing control flow edge from foo() back to the %second setjmp return block. In a function that contains a setjmp, all calls which may call longjmp must have a CFG edge to the second setjmp return block. In LLVM that control flow edge is missing and LLVM miscompiles code because of it.

    This problem also manifests in the backend. The first time I heard of this problem it was in the context of the backend losing track of the placement of variables on the stack, and this issue was the underlying root cause.

    For the most part setjmp/longjmp seems to work because LLVM isn't usually able to analyze what calling foo() might do and can't perform the optimization. For instance if val was not a fresh allocation but was a pointer, then who's to say that foo() doesn't have access to the same pointer, and then performs "val <- 1" on it? If LLVM can't prove that impossible, that precludes the transform to print(0). Secondly, setjmp/longjmp are just not used often in real code.