I hate a dataset that looks like this called df_bios
:
{'userid': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7}, 'text_string': {0: 'I live in Miami and work in software', 1: 'Chicago, IL', 2: 'Dog Mom in Cincinnati 🐶, 3: 'Accountant at @EY/Baltimore', 4: 'World traveler but I call Atlanta home', 5: '⚡️🍒🐆🍾😝🦋❤️🔥 sc/-emmabrown1133 @shefit EMMA15💸', 6: 'Working in Orlando. From Korea.'}}
I'm trying to remove all the unnecessary emojis (as well as any other special characters, symbols, pictographs, etc...)
I tried using the answer provided here, but it didn't do anything:
import re
def remove_emojis(df_bios):
emoj = re.compile("["
u"\U0001F600-\U0001F64F" # emoticons
u"\U0001F300-\U0001F5FF" # symbols & pictographs
u"\U0001F680-\U0001F6FF" # transport & map symbols
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
u"\U00002500-\U00002BEF" # chinese char
u"\U00002702-\U000027B0"
u"\U00002702-\U000027B0"
u"\U000024C2-\U0001F251"
u"\U0001f926-\U0001f937"
u"\U00010000-\U0010ffff"
u"\u2640-\u2642"
u"\u2600-\u2B55"
u"\u200d"
u"\u23cf"
u"\u23e9"
u"\u231a"
u"\ufe0f" # dingbats
u"\u3030"
"]+", re.UNICODE)
return re.sub(emoj, '', df_bios)
It didn't return any errors, it just returned the same data without any changes.
You can apply your remove_emojis
function to your dataframe column. This will replace your emojis with nothing.
import pandas as pd
def remove_emojis(df_bios):
emoj = re.compile("["
u"\U0001F600-\U0001F64F" # emoticons
u"\U0001F300-\U0001F5FF" # symbols & pictographs
u"\U0001F680-\U0001F6FF" # transport & map symbols
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
u"\U00002500-\U00002BEF" # chinese char
u"\U00002702-\U000027B0"
u"\U00002702-\U000027B0"
u"\U000024C2-\U0001F251"
u"\U0001f926-\U0001f937"
u"\U00010000-\U0010ffff"
u"\u2640-\u2642"
u"\u2600-\u2B55"
u"\u200d"
u"\u23cf"
u"\u23e9"
u"\u231a"
u"\ufe0f" # dingbats
u"\u3030"
"]+", re.UNICODE)
return re.sub(emoj, '', df_bios)
data = {'userid': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7}, 'text_string': {0: 'I live in Miami and work in software', 1: 'Chicago, IL', 2: 'Dog Mom in Cincinnati 🐶', 3: 'Accountant at @EY/Baltimore', 4: 'World traveler but I call Atlanta home', 5: '⚡️🍒🐆🍾😝🦋❤️🔥sc/-emmabrown1133@shefit EMMA15💸', 6: 'Working in Orlando. From Korea.'}}
df_bios = pd.DataFrame(data)
df_bios.text_string = df_bios['text_string'].apply(remove_emojis)
Outputs
userid text_string
0 1 I live in Miami and work in software
1 2 Chicago, IL
2 3 Dog Mom in Cincinnati
3 4 Accountant at @EY/Baltimore
4 5 World traveler but I call Atlanta home
5 6 sc/-emmabrown1133@shefit EMMA15
6 7 Working in Orlando. From Korea.