I am really new to multiprocessing!
Here is the code I was trying to run.
import cv2
import time
from multiprocessing import Array
import concurrent.futures
import copyreg as copy_reg
import types
def _pickle_method(m):
if m.im_self is None:
return getattr, (m.im_class, m.im_func.func_name)
else:
return getattr, (m.im_self, m.im_func.func_name)
copy_reg.pickle(types.MethodType, _pickle_method)
class Testing():
def __init__(self):
self.executor = concurrent.futures.ProcessPoolExecutor()
self.futures = None
self.shared_array = Array('i', 4)
def wait_n_secs(self,n):
print(f"I wait for {n} sec")
cv2.waitKey(n*1000)
wait_array = (n,n,n,n)
return wait_array
def function(waittime):
bbox = Testing().wait_n_secs(waittime)
return bbox
if __name__ =="__main__":
testing = Testing()
waittime = 5
# Not working!
testing.futures = testing.executor.submit(testing.wait_n_secs,waittime)
# Working!
#testing.futures = testing.executor.submit(function,waittime)
stime = time.time()
while 1:
if not testing.futures.running():
print("Checking for results")
testing.shared_array = testing.futures.result()
print("Shared_array received = ",testing.shared_array)
break
time_elapsed = time.time()-stime
if (( time_elapsed % 1 ) < 0.001):
print(f"Time elapsed since some time = {time_elapsed:.2f} sec")
Traceback (most recent call last):
File "C:\Users\haide\AppData\Local\Programs\Python\Python36\lib\multiprocessing\queues.py", line 234, in _feed
obj = _ForkingPickler.dumps(obj)
File "C:\Users\haide\AppData\Local\Programs\Python\Python36\lib\multiprocessing\reduction.py", line 51, in dumps
cls(buf, protocol).dump(obj)
File "C:\Users\haide\AppData\Local\Programs\Python\Python36\lib\multiprocessing\queues.py", line 58, in __getstate__
context.assert_spawning(self)
File "C:\Users\haide\AppData\Local\Programs\Python\Python36\lib\multiprocessing\context.py", line 356, in assert_spawning
' through inheritance' % type(obj).__name__
RuntimeError: Queue objects should only be shared between processes through inheritance
testing.shared_array = testing.futures.result()
File "C:\Users\haide\AppData\Local\Programs\Python\Python38\lib\concurrent\futures\_base.py", line 437, in result
return self.__get_result()
File "C:\Users\haide\AppData\Local\Programs\Python\Python38\lib\concurrent\futures\_base.py", line 389, in __get_result
raise self._exception
File "C:\Users\haide\AppData\Local\Programs\Python\Python38\lib\multiprocessing\queues.py", line 239, in _feed
obj = _ForkingPickler.dumps(obj)
File "C:\Users\haide\AppData\Local\Programs\Python\Python38\lib\multiprocessing\reduction.py", line 51, in dumps
cls(buf, protocol).dump(obj)
TypeError: cannot pickle 'weakref' object
As others like Amby, falviussn has previously asked.
Problem: We get a pickling error specifically for instance methods in multiprocessing as they are unpickable.
The solution most mentioned is to use copy_reg to pickle the instance method.
(I haven't tried):
testing.futures = testing.executor.submit(function,waittime)
This does work. But does not seem like an elegant solution.
@Aaron Can you share an example code of your solution? "passing a module level function that takes instance as an argument" or Correct my mistake here:
This was my attempt. :(
inp_args = [waittime]
testing.futures = testing.executor.submit(wrapper_func,testing,inp_args)
def wrapper_func(ins,*args):
ins.wait_n_secs(args)
TypeError: cannot pickle 'weakref' object
We get a pickling error specifically for instance methods in multiprocessing as they are unpickable.
This is not true, instance methods are very much picklable in python 3 (unless they contain local attributes, like factory functions). You get the error because some other instance attributes (specific to your code) are not picklable.
Please guide me on how to correctly use copyreg as I clearly don't understand its workings.
It's not required here
If it's a python3 issue, Suggest another solution where i can pass instance methods to conccurent.futurs.ProcessPoolExecutor.submit() for multi-processing. :)
It's not really a python issue, it's to do with what data your sending to be pickled. Specifically, all three attributes (after they are populated), self.executor
, self.futures
and self.shared_array
cannot be put on a multiprocessing.Queue
(which ProcessPoolExecutor
internally uses) and pickled.
So, the problem happens because you are passing an instance method as the target function, which means that all instance attributes are also implicitly pickled and sent to the other process. Since, some of these attributes are not picklable, this error is raised. This is also the reason why your workaround works, since the instance attributes are not pickled there as the target function is not an instance method. There are a couple of things you can do, the best way depends on if there are other attributes that you need to send as well.
Method #1
Judging from the sample code, your wait_n_secs
function is not really using any instance attributes. Therefore, you can convert it into a staticmethod and pass that as the target function directly instead:
import time
from multiprocessing import Array
import concurrent.futures
class Testing():
def __init__(self):
self.executor = concurrent.futures.ProcessPoolExecutor()
self.futures = None
self.shared_array = Array('i', 4)
@staticmethod
def wait_n_secs(n):
print(f"I wait for {n} sec")
# Have your own implementation here
time.sleep(n)
wait_array = (n, n, n, n)
return wait_array
if __name__ == "__main__":
testing = Testing()
waittime = 5
testing.futures = testing.executor.submit(type(testing).wait_n_secs, waittime) # Notice the type(testing)
stime = time.time()
while 1:
if not testing.futures.running():
print("Checking for results")
testing.shared_array = testing.futures.result()
print("Shared_array received = ", testing.shared_array)
break
time_elapsed = time.time() - stime
if ((time_elapsed % 1) < 0.001):
print(f"Time elapsed since some time = {time_elapsed:.2f} sec")
Method #2
If your instance contains attributes which would be used by the target functions (so they can't be converted to staticmethods), then you can also explicitly not pass the unpicklable attributes of the instance when pickling using the __getstate__
method. This would mean that the instance recreated inside other processes would not have all these attributes either (since we did not pass them), so do keep that in mind:
import time
from multiprocessing import Array
import concurrent.futures
class Testing():
def __init__(self):
self.executor = concurrent.futures.ProcessPoolExecutor()
self.futures = None
self.shared_array = Array('i', 4)
def wait_n_secs(self, n):
print(f"I wait for {n} sec")
# Have your own implementation here
time.sleep(n)
wait_array = (n, n, n, n)
return wait_array
def __getstate__(self):
d = self.__dict__.copy()
# Delete all unpicklable attributes.
del d['executor']
del d['futures']
del d['shared_array']
return d
if __name__ == "__main__":
testing = Testing()
waittime = 5
testing.futures = testing.executor.submit(testing.wait_n_secs, waittime)
stime = time.time()
while 1:
if not testing.futures.running():
print("Checking for results")
testing.shared_array = testing.futures.result()
print("Shared_array received = ", testing.shared_array)
break
time_elapsed = time.time() - stime
if ((time_elapsed % 1) < 0.001):
print(f"Time elapsed since some time = {time_elapsed:.2f} sec")