I got a dataframe with a column named "categories". Some data of this column looks like this {[], [], [amazon], [clothes], [telecommunication],[],...}
. Every row has only one of this values. My task is now to give this values their entities. I tried a lot but it didn't go well. This was my first attempt
import spacy
nlp = spacy.load("de_core_news_sm")
doc=list(nlp.pipe(df.categories))
print([(X.text, X.label_) for X in doc.ents])
AttributeError 'list' object has no attribute 'ents'
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
in ----> 1 print([(X.text, X.label_) for X in doc.ents])
AttributeError: 'list' object has no attribute 'ents'
My second attempt:
for token in doc:
print(token.doc, token.pos_, token.dep_)
AttributeError 'spacy.tokens.doc.Doc' object has no attribute 'pos_'
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
in 1 for token in doc: ----> 2 print(token.doc, token.pos_, token.dep_)
AttributeError 'spacy.tokens.doc.Doc' object has no attribute 'pos_'
Third attempt:
docs = df["categories"].apply(nlp)
for token in docs:
print(token.text, token.pos_, token.dep_)
AttributeError 'spacy.tokens.doc.Doc' object has no attribute 'docs'
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
in 1 docs = df["categories"].apply(nlp) 2 for token in docs: ----> 3 print(token.docs, token.pos_, token.dep_)
AttributeError: 'spacy.tokens.doc.Doc' object has no attribute 'docs'
I just want to iterate spacy on this column to give me for the values an entity. For the empty values it should give me no entity. The column is a string. Thanks for help.
You have list with many doc
and you have to use extra for
-loop to work with every doc separatelly.
docs = list(nlp.pipe(df.categories)) # variable `docs` instead of `doc`
for doc in docs:
print([(X.text, X.label_) for X in doc.ents])
and
docs = list(nlp.pipe(df.categories)) # variable `docs` instead of `doc`
for doc in docs:
for token in doc:
print(token.text, token.pos_, token.dep_)
Documentations Language Processing Pipelines shows it like
for doc in nlp.pipe(df.categories):
print([(X.text, X.label_) for X in doc.ents])
for token in doc:
print(token.text, token.pos_, token.dep_)
And the same problem is with apply(nlp)
docs = df["categories"].apply(nlp)
for doc in docs:
for token in doc:
print(token.text, token.pos_, token.dep_)
Full working example:
import spacy
import pandas as pd
df = pd.DataFrame({
'categories': ['amazon', 'clothes', 'telecommunication']
})
nlp = spacy.load("de_core_news_sm")
print('\n--- version 1 ---\n')
docs = list(nlp.pipe(df.categories))
for doc in docs:
print([(X.text, X.label_) for X in doc.ents])
for token in doc:
print(token.text, token.pos_, token.dep_)
print('\n--- version 2 ---\n')
docs = df["categories"].apply(nlp)
for doc in docs:
for token in doc:
print(token.text, token.pos_, token.dep_)