Search code examples
rleast-squaresnls

nls.lm - Relative error in the sum of squares is at most `ftol'


I am trying to fit experimental data to a set of 3 PDEs:

dX/dt = mumax.(S/(Ks+S)).(1-X/Xm).X

dS/dt = -1/Y_x/s * dX/dt - m_s.X - k_LD * dL/dt

dL/dt = -kl * L

I got error No. 6 of 'ftol':

"Error in chol.default(object$hessian) : the leading minor of order 6 is not positive definite"

"reason terminated: Relative error in the sum of squares is at most `ftol'."

I don't know if the problem lies in the models or the data.

Please find the code below. Thanks

library(deSolve)
library(ggplot2)
library(minpack.lm)
library(reshape2)
time <- c(0,2,4,5,6,7,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42)
X <- c(0.010044683, 0.011653262, 0.013306524, 0.014155496, 0.014959786, 
       0.015630027, 0.016434316, 0.018132261, 0.019651475, 0.021394102, 
       0.023002681, 0.024432529, 0.026085791, 0.027828418, 0.029347632, 
       0.031090259, 0.032698838, 0.034262735, 0.035915996, 0.037569258, 
       0.039311886, 0.040786416, 0.042350313, 0.04409294)
S <- c(0.585443495, 0.537584046, 0.505306743, 0.476368471, 0.464125356, 
       0.451882241, 0.441308642, 0.426283001, 0.403466287, 0.394005698, 
       0.37508452, 0.371188984, 0.353937322, 0.355050332, 0.33668566, 
       0.343920228, 0.328338082, 0.333346629, 0.319433998, 0.314425451, 
       0.309416904, 0.302182336, 0.294391263, 0.288269706)
L <- c(0.372443284, 0.370216418, 0.361865672, 0.362979104, 0.357968657, 
  0.359638806, 0.355741791, 0.345720896, 0.34961791, 0.334029851, 
  0.329019403, 0.334029851, 0.327349254, 0.322338806, 0.319555224, 
  0.315101493, 0.31398806, 0.305080597, 0.302297015, 0.297286567, 
  0.295059701, 0.289492537, 0.282255224, 0.27668806)
data <- data.frame(time,X,S,L)
attach(data)

Hybrid <- function(t,c,parms) {
  k1 <- parms$k1 # mumax
  k2 <- parms$k2 # Ks
  k3 <- parms$k3 # Xm
  k4 <- parms$k4 # Y_x/s
  k5 <- parms$k5 # m_s
  k6 <- parms$k6 # k_LD
  k7 <- parms$k7 # k_l
  r <- numeric(length(c)) 
  r[1] <-  k1 * (c["S"]  / ( k2 + c["S"] )) * c["X"] * (1-c["X"]/k3)  # r[1] = dX/dt = mumax.(S/(Ks+S)).(1-X/Xm).X
  r[2] <- -1/k4 * r[1] - k5 * c["X"] - k6 * r[3] # r[2] = dS/dt = -1/Y_x/s * dX/dt - m_s.X - k_LD * dL/dt
  r[3] <- -k7*c["L"] # dL/dt = -kl * L
  return(list(r))       
}

residuals <- function(parms){
  cinit <- c( X = data[1,2], S = data[1,3], L = data[1,4] )
  t <- sort(unique(c(seq(0, 42, 1), data$time)))
  k1 <- parms[1]
  k2 <- parms[2]
  k3 <- parms[3]
  k4 <- parms[4]
  k5 <- parms[5]
  k6 <- parms[6]
  k7 <- parms[7]
  out <- ode( y = cinit, 
              times = t, 
              func = Hybrid, 
              parms = list( k1 = k1, k2 = k2, k3 = k3, k4 = k4, k5 = k5, k6 = k6, k7 = k7) )
  out_data <- data.frame(out)
  out_data <- out_data[out_data$time %in% data$time,]
  pred_data <- melt(out_data,id.var="time",variable.name="Substance",value.name="Conc")
  exp_data <- melt(data,id.var="time",variable.name="Substance",value.name="Conc")
  residuals <- pred_data$Conc-exp_data$Conc
  return(residuals)
}

parms <- c( k1=0.8,  # mumax
            k2=1.2,  # Ks 
            k3=0.06, # Xm 
            k4=0.05, # Y_x/s
            k5=0.001,# m_s 
            k6=0.05, # k_LD
            k7=0.003)# kl

fitval <- nls.lm(par=parms,fn=residuals)
summary(fitval)
fitval

parest=as.list(coef(fitval))
cinit <- c( X=data[1,2], S=data[1,3], L=data[1,4] )
t<-seq(0, 42, 1)
parms<-as.list(parest)
out<-ode(y=cinit,times=t,func=Hybrid,parms=parms)
out_data<-data.frame(out)
names(out_data)<-c("time","X_pred","S_pred","L_pred")

tmppred<-melt(out_data,id.var=c("time"),variable.name="Substance",value.name="Concentration")
tmpexp<-melt(data,id.var=c("time"),variable.name="Substance",value.name="Concentration")
p<-ggplot(data=tmppred,aes(x=time,y=Concentration,color=Substance,linetype=Substance))+geom_line()
print(p)
p<-p+geom_line(data=tmpexp,aes(x=time,y=Concentration,color=Substance,linetype=Substance))
p<-p+geom_point(data=tmpexp,aes(x=time,y=Concentration,color=Substance))
p<-p+scale_linetype_manual(values=c(0,1,0,1,0,1))
p<-p+scale_color_manual(values=rep(c("red","blue","purple"),each=2))+theme_bw()
print(p)


Solution

  • Firstly, if we extract the hessian matrix from the model object we can see:

    fitval$hessian
    #     k1            k2            k3            k4            k5           k6            k7
    # k1  3.568033e-09 -1.851988e-09  1.541311e-03 -2.863371e-04  7.213943e-05  0 -3.474817e-10
    # k2 -1.851988e-09  9.612743e-10 -8.000189e-04  1.486235e-04 -3.744407e-05  0 -1.831356e-10
    # k3  1.541311e-03 -8.000189e-04  1.836024e+03 -2.876605e+02  1.210877e+02  0 -6.701843e-05
    # k4 -2.863371e-04  1.486235e-04 -2.876605e+02  4.643049e+01 -1.841829e+01  0 -1.367424e-05
    # k5  7.213943e-05 -3.744407e-05  1.210877e+02 -1.841829e+01  8.765142e+00  0 -1.851183e-05
    # k6  0.000000e+00  0.000000e+00  0.000000e+00  0.000000e+00  0.000000e+00  0  0.000000e+00
    # k7 -3.474817e-10 -1.831356e-10 -6.701843e-05 -1.367424e-05 -1.851183e-05  0  1.215381e+03
    

    Notice that k6 row and column are all equal to zero? Thus, your hessian is singular and when the Cholesky decomposition is ran, you get the error:

    chol(fitval$hessian) # Error in chol.default(fitval$hessian) : the leading minor of order 6 is not positive definite
    

    This can happen in a lot of ways. In this case, the error is in the function Hybrid. Notice that you use r[3] to compute r[2] (but r[3] is not yet defined)? If you exchange the lines (compute r[3] first and then r[2]) as in:

    Hybrid <- function(t,c,parms) {
      k1 <- parms$k1 # mumax
      k2 <- parms$k2 # Ks
      k3 <- parms$k3 # Xm
      k4 <- parms$k4 # Y_x/s
      k5 <- parms$k5 # m_s
      k6 <- parms$k6 # k_LD
      k7 <- parms$k7 # k_l
      r <- numeric(length(c)) 
      r[1] <-  k1 * (c["S"]  / ( k2 + c["S"] )) * c["X"] * (1-c["X"]/k3)  # r[1] = dX/dt = mumax.(S/(Ks+S)).(1-X/Xm).X
      r[3] <- -k7*c["L"] # dL/dt = -kl * L
      r[2] <- -1/k4 * r[1] - k5 * c["X"] - k6 * r[3] # r[2] = dS/dt = -1/Y_x/s * dX/dt - m_s.X - k_LD * dL/dt
      return(list(r))       
    }
    

    Then, the error disappears:

    summary(fitval)
    # Parameters:
    #   Estimate Std. Error t value Pr(>|t|)    
    # k1  1.958e+03  9.348e+06   0.000   0.9998    
    # k2  3.738e+03  1.785e+07   0.000   0.9998    
    # k3  3.041e-02  1.393e-03  21.835   <2e-16 ***
    # k4  1.188e-01  6.311e-02   1.882   0.0644 .  
    # k5  3.078e-02  3.795e-01   0.081   0.9356    
    # k6 -9.697e-01  5.823e+00  -0.167   0.8683    
    # k7  6.626e-03  1.525e-04  43.459   <2e-16 ***
    #   ---
    #   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    # 
    # Residual standard error: 0.005309 on 65 degrees of freedom
    # Number of iterations to termination: 37 
    # Reason for termination: Conditions for `info = 1' and `info = 2' both hold.