I am working on a model for time series forecasting.
I have two arrays xtrain and ytrain with shapes:
The model is:
model = Sequential(
[
tf.keras.layers.Conv1D(filters=64,
kernel_size=3,
strides=1,
activation="relu",
padding='causal'),
tf.keras.layers.LSTM(64)
tf.keras.layers.Dense(10, activation="relu"),
tf.keras.layers.Dense(1)
])
How should I input the data and make the model so it treats xtrain as one traditional CNN will behave with a dataset with shape (64, 64, 3)?
You can do this 2 ways.
(1,1865)
tensor. You can define the model like thisx = np.random.randn(961,4,1865)
y = np.random.randn(961,1,1865)
model = tf.keras.models.Sequential(
[
tf.keras.layers.Conv1D(filters=64,
kernel_size=3,
strides=1,
activation="relu",
padding='causal',
input_shape=(4,1865)),
tf.keras.layers.LSTM(64),
tf.keras.layers.Dense(10, activation="relu"),
tf.keras.layers.Dense(1865),
tf.keras.layers.Lambda(lambda x: tf.expand_dims(x,1))
])
model.compile(loss='mse',optimizer='adam')
model.fit(x,y,batch_size=16,epochs=10,validation_split=0.2)
>>>
Epoch 1/10
48/48 [==============================] - 3s 22ms/step - loss: 0.9862 - val_loss: 1.0033
Epoch 2/10
48/48 [==============================] - 1s 12ms/step - loss: 0.9856 - val_loss: 1.0036
y
. Since it's 1, you don't actually need it. That way you can skip the lambda
functionx = np.random.randn(961,4,1865)
y = np.random.randn(961,1,1865)
y = np.squeeze(y,1)
model = tf.keras.models.Sequential(
[
tf.keras.layers.Conv1D(filters=64,
kernel_size=3,
strides=1,
activation="relu",
padding='causal',
input_shape=(4,1865)),
tf.keras.layers.LSTM(64),
tf.keras.layers.Dense(10, activation="relu"),
tf.keras.layers.Dense(1865)
])
model.compile(loss='mse',optimizer='adam')
model.fit(x,y,batch_size=16,epochs=10,validation_split=0.2)