I have a DF like this:
ID | Name | Phone1 | Phone2 | Mail1 | Mail2 | contact phone | contact mail | |
---|---|---|---|---|---|---|---|---|
70 | DASS ARGENTINA SRL | [email protected] | 2664941642 | 2664941644 | [email protected] | [email protected] | 115456789 | [email protected] |
71 | PEPSI | [email protected] | 0456535365 | 7766554399 | [email protected] | [email protected] | 8864545332 | [email protected] |
ID | Name | LOCATOR |
---|---|---|
70 | DASS ARGENTINA SRL | [email protected] |
70 | DASS ARGENTINA SRL | 2664941642 |
70 | DASS ARGENTINA SRL | 2664941644 |
70 | DASS ARGENTINA SRL | [email protected] |
70 | DASS ARGENTINA SRL | [email protected] |
70 | DASS ARGENTINA SRL | 115456789 |
70 | DASS ARGENTINA SRL | [email protected] |
71 | PEPSI | [email protected] |
71 | PEPSI | 0456535365 |
71 | PEPSI | 7766554399 |
71 | PEPSI | [email protected] |
71 | PEPSI | [email protected] |
71 | PEPSI | 8864545332 |
71 | PEPSI | [email protected] |
Is it possible to do anythong like this? I´ve tried with transpose function but I´m not getting the output like the example above
use pd.melt to flatten the dataframe and then sort and remove the unwanted columns
df.drop(columns='ID').melt(id_vars='Name', value_name='Locator').sort_values('Name').drop(columns='variable')
Name Locator
0 DASS ARGENTINA SRL [email protected]
2 DASS ARGENTINA SRL 2664941642
4 DASS ARGENTINA SRL 2664941644
6 DASS ARGENTINA SRL [email protected]
8 DASS ARGENTINA SRL [email protected]
10 DASS ARGENTINA SRL 115456789
12 DASS ARGENTINA SRL [email protected]
1 PEPSI [email protected]
3 PEPSI 456535365
5 PEPSI 7766554399
7 PEPSI [email protected]
9 PEPSI [email protected]
11 PEPSI 8864545332
13 PEPSI [email protected]