I am using Spark Structured Streaming to read messages from multiple topics in kafka. I am facing below error: java.lang.NoSuchMethodError: org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool$PoolConfig.setMinEvictableIdleTime(Ljava/time/Duration;)V
Below are my maven dependencies I am using,
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId>
<artifactId>untitled</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>A Camel Scala Route</name>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
</properties>
<dependencyManagement>
<dependencies>
<!-- Camel BOM -->
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-parent</artifactId>
<version>2.25.4</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
</dependency>
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-scala</artifactId>
</dependency>
<!-- scala -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.13.8</version>
</dependency>
<dependency>
<groupId>org.scala-lang.modules</groupId>
<artifactId>scala-xml_2.13</artifactId>
<version>2.1.0</version>
</dependency>
<!-- logging -->
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-api</artifactId>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-slf4j-impl</artifactId>
<scope>runtime</scope>
</dependency>
<!--spark-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.13</artifactId>
<version>3.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.13</artifactId>
<version>3.3.0</version>
</dependency>
<!--spark Streaming kafka-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql-kafka-0-10_2.13</artifactId>
<version>3.3.0</version>
</dependency>
<!--kafka-->
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.13</artifactId>
<version>3.2.0</version>
</dependency>
<!--jackson-->
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.13.3</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>2.13.3</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-annotations</artifactId>
<version>2.13.3</version>
</dependency>
<!-- testing -->
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<defaultGoal>install</defaultGoal>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<!-- the Maven compiler plugin will compile Java source files -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.0</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-resources-plugin</artifactId>
<version>3.0.2</version>
<configuration>
<encoding>UTF-8</encoding>
</configuration>
</plugin>
<!-- the Maven Scala plugin will compile Scala source files -->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
<!-- configure the eclipse plugin to generate eclipse project descriptors for a Scala project -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-eclipse-plugin</artifactId>
<version>2.10</version>
<configuration>
<projectnatures>
<projectnature>org.scala-ide.sdt.core.scalanature</projectnature>
<projectnature>org.eclipse.jdt.core.javanature</projectnature>
</projectnatures>
<buildcommands>
<buildcommand>org.scala-ide.sdt.core.scalabuilder</buildcommand>
</buildcommands>
<classpathContainers>
<classpathContainer>org.scala-ide.sdt.launching.SCALA_CONTAINER</classpathContainer>
<classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>
</classpathContainers>
<excludes>
<exclude>org.scala-lang:scala-library</exclude>
<exclude>org.scala-lang:scala-compiler</exclude>
</excludes>
<sourceIncludes>
<sourceInclude>**/*.scala</sourceInclude>
<sourceInclude>**/*.java</sourceInclude>
</sourceIncludes>
</configuration>
</plugin>
<!-- allows the route to be run via 'mvn exec:java' -->
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>1.6.0</version>
<configuration>
<mainClass>org.example.MyRouteMain</mainClass>
</configuration>
</plugin>
</plugins>
</build>
</project>
Scala Version: 2.13.8
Spark Version: 3.3.0
This my Code snippet to read from Kafka topics:
object consumerMain {
val log : Logger = Logger.getLogger(controller.driver.getClass)
val config: Map[String, String]=Map[String,String](
"kafka.bootstrap.servers" -> bootstrapServer,
"startingOffsets" -> "earliest",
"kafka.security.protocol" -> security_protocol,
"kafka.ssl.truststore.location" -> truststore_location,
"kafka.ssl.truststore.password" -> password,
"kafka.ssl.keystore.location" -> keystore_location,
"kafka.ssl.keystore.password" -> password,
"kafka.ssl.key.password"-> password,
"kafka.ssl.endpoint.identification.algorithm"-> ""
)
def main(args: Array[String]) : Unit ={
log.info("SPARKSESSION CREATED!!!")
val spark = SparkSession.builder()
.appName("kafka-sample-consumer")
.master("local")
.getOrCreate()
log.info("READING MESSAGES FROM KAFKA!!!")
val kafkaMsg = spark
.readStream
.format("Kafka")
.options(config)
.option("kafka.group.id", group_id)
.option("subscribe", "sample_topic_T")
.load()
kafkaMsg.printSchema()
kafkaMsg.writeStream
.format("console")
//.outputMode("append")
.start()
.awaitTermination()
}
}
Below, I am able to see the kafka proeprties I have set in the logs printed on the console:
[ main] StateStoreCoordinatorRef INFO Registered StateStoreCoordinator endpoint
[ main] ContextHandler INFO Started o.s.j.s.ServletContextHandler@6e00837f{/StreamingQuery,null,AVAILABLE,@Spark}
[ main] ContextHandler INFO Started o.s.j.s.ServletContextHandler@6a5dd083{/StreamingQuery/json,null,AVAILABLE,@Spark}
[ main] ContextHandler INFO Started o.s.j.s.ServletContextHandler@1e6bd263{/StreamingQuery/statistics,null,AVAILABLE,@Spark}
[ main] ContextHandler INFO Started o.s.j.s.ServletContextHandler@635ff2a5{/StreamingQuery/statistics/json,null,AVAILABLE,@Spark}
[ main] ContextHandler INFO Started o.s.j.s.ServletContextHandler@62735b13{/static/sql,null,AVAILABLE,@Spark}
[ main] ResolveWriteToStream WARN Temporary checkpoint location created which is deleted normally when the query didn't fail: C:\Users\xyz\AppData\Local\Temp\temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb. If it's required to delete it under any circumstances, please set spark.sql.streaming.forceDeleteTempCheckpointLocation to true. Important to know deleting temp checkpoint folder is best effort.
[ main] ResolveWriteToStream INFO Checkpoint root C:\Users\xyz\AppData\Local\Temp\temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb resolved to file:/C:/Users/xyz/AppData/Local/Temp/temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb.
[ main] ResolveWriteToStream WARN spark.sql.adaptive.enabled is not supported in streaming DataFrames/Datasets and will be disabled.
[ main] CheckpointFileManager INFO Writing atomically to file:/C:/Users/xyz/AppData/Local/Temp/temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb/metadata using temp file file:/C:/Users/xyz/AppData/Local/Temp/temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb/.metadata.c2b5aa2a-2a86-4931-a4f0-bbdaae8c3d5f.tmp
[ main] CheckpointFileManager INFO Renamed temp file file:/C:/Users/xyz/AppData/Local/Temp/temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb/.metadata.c2b5aa2a-2a86-4931-a4f0-bbdaae8c3d5f.tmp to file:/C:/Users/xyz/AppData/Local/Temp/temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb/metadata
[ main] MicroBatchExecution INFO Starting [id = 54eadb58-a957-4f8d-b67e-24ef6717482c, runId = ceb06ba5-1ce6-4ccd-bfe9-b4e24fd497a6]. Use file:/C:/Users/xyz/AppData/Local/Temp/temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb to store the query checkpoint.
[5-1ce6-4ccd-bfe9-b4e24fd497a6]] MicroBatchExecution INFO Reading table [org.apache.spark.sql.kafka010.KafkaSourceProvider$KafkaTable@5efc8880] from DataSourceV2 named 'Kafka' [org.apache.spark.sql.kafka010.KafkaSourceProvider@2703aebd]
[5-1ce6-4ccd-bfe9-b4e24fd497a6]] KafkaSourceProvider WARN Kafka option 'kafka.group.id' has been set on this query, it is
not recommended to set this option. This option is unsafe to use since multiple concurrent
queries or sources using the same group id will interfere with each other as they are part
of the same consumer group. Restarted queries may also suffer interference from the
previous run having the same group id. The user should have only one query per group id,
and/or set the option 'kafka.session.timeout.ms' to be very small so that the Kafka
consumers from the previous query are marked dead by the Kafka group coordinator before the
restarted query starts running.
[5-1ce6-4ccd-bfe9-b4e24fd497a6]] MicroBatchExecution INFO Starting new streaming query.
[5-1ce6-4ccd-bfe9-b4e24fd497a6]] MicroBatchExecution INFO Stream started from {}
[5-1ce6-4ccd-bfe9-b4e24fd497a6]] ConsumerConfig INFO ConsumerConfig values:
auto.commit.interval.ms = 5000
auto.offset.reset = earliest
bootstrap.servers = [localhost:9092, localhost: 9093]
check.crcs = true
client.dns.lookup = default
client.id =
connections.max.idle.ms = 540000
default.api.timeout.ms = 60000
enable.auto.commit = false
exclude.internal.topics = true
fetch.max.bytes = 52428800
fetch.max.wait.ms = 500
fetch.min.bytes = 1
group.id = kafka-message-test-group
heartbeat.interval.ms = 3000
interceptor.classes = []
internal.leave.group.on.close = true
isolation.level = read_uncommitted
key.deserializer = class org.apache.kafka.common.serialization.ByteArrayDeserializer
max.partition.fetch.bytes = 1048576
max.poll.interval.ms = 300000
max.poll.records = 1
metadata.max.age.ms = 300000
metric.reporters = []
metrics.num.samples = 2
metrics.recording.level = INFO
metrics.sample.window.ms = 30000
partition.assignment.strategy = [class org.apache.kafka.clients.consumer.RangeAssignor]
receive.buffer.bytes = 65536
reconnect.backoff.max.ms = 1000
reconnect.backoff.ms = 50
request.timeout.ms = 30000
retry.backoff.ms = 100
sasl.client.callback.handler.class = null
sasl.jaas.config = null
sasl.kerberos.kinit.cmd = /usr/bin/kinit
sasl.kerberos.min.time.before.relogin = 60000
sasl.kerberos.service.name = null
sasl.kerberos.ticket.renew.jitter = 0.05
sasl.kerberos.ticket.renew.window.factor = 0.8
sasl.login.callback.handler.class = null
sasl.login.class = null
sasl.login.refresh.buffer.seconds = 300
sasl.login.refresh.min.period.seconds = 60
sasl.login.refresh.window.factor = 0.8
sasl.login.refresh.window.jitter = 0.05
sasl.mechanism = GSSAPI
security.protocol = SSL
send.buffer.bytes = 131072
session.timeout.ms = 10000
ssl.cipher.suites = null
ssl.enabled.protocols = [TLSv1.2, TLSv1.1, TLSv1]
ssl.endpoint.identification.algorithm =
ssl.key.password = [hidden]
ssl.keymanager.algorithm = SunX509
ssl.keystore.location = src/main/resources/consumer_inlet/keystore.jks
ssl.keystore.password = [hidden]
ssl.keystore.type = JKS
ssl.protocol = TLS
ssl.provider = null
ssl.secure.random.implementation = null
ssl.trustmanager.algorithm = PKIX
ssl.truststore.location = src/main/resources/consumer_inlet/truststore.jks
ssl.truststore.password = [hidden]
ssl.truststore.type = JKS
value.deserializer = class org.apache.kafka.common.serialization.ByteArrayDeserializer
The following error I am getting while running the consumerMain:
Exception in thread "main" org.apache.spark.sql.streaming.StreamingQueryException: Writing job aborted
=== Streaming Query ===
Identifier: [id = 54eadb58-a957-4f8d-b67e-24ef6717482c, runId = ceb06ba5-1ce6-4ccd-bfe9-b4e24fd497a6]
Current Committed Offsets: {}
Current Available Offsets: {KafkaV2[Subscribe[sample_topic_T]]: {"clinical_sample_T":{"0":155283144,"1":155233229}}}
Current State: ACTIVE
Thread State: RUNNABLE
Logical Plan:
WriteToMicroBatchDataSource org.apache.spark.sql.execution.streaming.ConsoleTable$@4f9c824, 54eadb58-a957-4f8d-b67e-24ef6717482c, Append
+- StreamingDataSourceV2Relation [key#7, value#8, topic#9, partition#10, offset#11L, timestamp#12, timestampType#13], org.apache.spark.sql.kafka010.KafkaSourceProvider$KafkaScan@135a05da, KafkaV2[Subscribe[sample_topic_T]]
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:330)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:208)
Caused by: org.apache.spark.SparkException: Writing job aborted
at org.apache.spark.sql.errors.QueryExecutionErrors$.writingJobAbortedError(QueryExecutionErrors.scala:749)
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.writeWithV2(WriteToDataSourceV2Exec.scala:409)
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.writeWithV2$(WriteToDataSourceV2Exec.scala:353)
at org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.writeWithV2(WriteToDataSourceV2Exec.scala:302)
at org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.run(WriteToDataSourceV2Exec.scala:313)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result$lzycompute(V2CommandExec.scala:43)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result(V2CommandExec.scala:43)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.executeCollect(V2CommandExec.scala:49)
at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3868)
at org.apache.spark.sql.Dataset.$anonfun$collect$1(Dataset.scala:3120)
at org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:3858)
at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:510)
at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3856)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:109)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:169)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:95)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3856)
at org.apache.spark.sql.Dataset.collect(Dataset.scala:3120)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runBatch$17(MicroBatchExecution.scala:663)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:109)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:169)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:95)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runBatch$16(MicroBatchExecution.scala:658)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:375)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:373)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:68)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runBatch(MicroBatchExecution.scala:658)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$2(MicroBatchExecution.scala:255)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.scala:18)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:375)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:373)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:68)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$1(MicroBatchExecution.scala:218)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:67)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:212)
at org.apache.spark.sql.execution.streaming.StreamExecution.$anonfun$runStream$1(StreamExecution.scala:307)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.scala:18)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:285)
... 1 more
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0) (LHTU05CG050CC8Q.ms.ds.uhc.com executor driver): java.lang.NoSuchMethodError: org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool$PoolConfig.setMinEvictableIdleTime(Ljava/time/Duration;)V
at org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool$PoolConfig.init(InternalKafkaConsumerPool.scala:186)
at org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool$PoolConfig.<init>(InternalKafkaConsumerPool.scala:163)
at org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool.<init>(InternalKafkaConsumerPool.scala:54)
at org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer$.<clinit>(KafkaDataConsumer.scala:637)
at org.apache.spark.sql.kafka010.KafkaBatchPartitionReader.<init>(KafkaBatchPartitionReader.scala:53)
at org.apache.spark.sql.kafka010.KafkaBatchReaderFactory$.createReader(KafkaBatchPartitionReader.scala:41)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.advanceToNextIter(DataSourceRDD.scala:84)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.hasNext(DataSourceRDD.scala:63)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$9.hasNext(Iterator.scala:576)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:760)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.$anonfun$run$1(WriteToDataSourceV2Exec.scala:435)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1538)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.run(WriteToDataSourceV2Exec.scala:480)
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.$anonfun$writeWithV2$2(WriteToDataSourceV2Exec.scala:381)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:136)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:548)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1504)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:551)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2672)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2608)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2607)
at scala.collection.immutable.List.foreach(List.scala:333)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2607)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1182)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1182)
at scala.Option.foreach(Option.scala:437)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1182)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2860)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2791)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:952)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2228)
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.writeWithV2(WriteToDataSourceV2Exec.scala:377)
... 42 more
Caused by: java.lang.NoSuchMethodError: org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool$PoolConfig.setMinEvictableIdleTime(Ljava/time/Duration;)V
at org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool$PoolConfig.init(InternalKafkaConsumerPool.scala:186)
at org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool$PoolConfig.<init>(InternalKafkaConsumerPool.scala:163)
at org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool.<init>(InternalKafkaConsumerPool.scala:54)
at org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer$.<clinit>(KafkaDataConsumer.scala:637)
at org.apache.spark.sql.kafka010.KafkaBatchPartitionReader.<init>(KafkaBatchPartitionReader.scala:53)
at org.apache.spark.sql.kafka010.KafkaBatchReaderFactory$.createReader(KafkaBatchPartitionReader.scala:41)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.advanceToNextIter(DataSourceRDD.scala:84)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.hasNext(DataSourceRDD.scala:63)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$9.hasNext(Iterator.scala:576)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:760)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.$anonfun$run$1(WriteToDataSourceV2Exec.scala:435)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1538)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.run(WriteToDataSourceV2Exec.scala:480)
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.$anonfun$writeWithV2$2(WriteToDataSourceV2Exec.scala:381)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:136)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:548)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1504)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:551)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
I am running this in intellij
I downgraded the version of spark from 3.3.0 to 3.2.2 with the Scala version 2.13.8 remaining the same. For me, it seems the Scala version 2.13 was not compatible with Spark version 3.3.0 . For now I am able to write the Avro data to a file.
And Thanks to @OneCricketeer for your help and support so far!