First of all, I want to summarize how I arrived at this particular problem. I wanted to create a song recommender using collaborative filtering method. But the problem is that I have a very large dataset at hand, 1m rows x 2.2m columns. If my understanding is correct, I needed to create a sparse matrix in order to move forward with my idea, since I do not know of anything that can hold a matrix with the size of 1m x 2.2m.* Hence, sparse matrix.
Now, since this matrix will only contain 1s or 0s in the cells, I've somehow mapped out which cells should have 1 if I were to create a hypothetical monstrous matrix. The information I have looks like this;
rows | locations |
---|---|
row1 | [56110, 78999, 1508886, 2090010] |
row2 | [1123, 976554] |
... | ... |
row1000000 | [334555, 2200100] |
The problem is that I don't know how to create a sparse matrix using this information. I've checked many sources but couldn't find any viable solution. If you could help me, I would very much appreciate it. Also, if you have any notes on collaborative filtering methods that utilize sparse matrices I would also be very grateful.
There are several ways you could do this. Here is one that creates a csr_matrix
, since the data that you show is close to this format. (That docstring has a terse explanation of the csr_matrix
attributes data
, indices
and indptr
.) Whether or not this is the best method (for some definition of "best") depends on the actual "raw" form of your data (among other things).
I assume you can put the data that you show in the locations
column into a list of lists, called locations
. It is important that there is an entry in locations
for each row, even if the list is empty. I also assume that the values given in locations
are 0-based indices that correspond to the column of the matrix. Here's an example, for an array that has shape (5, 8).
In [23]: locations = [[2, 3], [], [1, 3, 5], [0, 1, 7], [7]]
To form indptr
, we compute the cumulative sum of the lengths of the lists, and prepend a 0:
In [28]: lengths = np.array([len(t) for t in locations])
In [29]: lengths
Out[29]: array([2, 0, 3, 3, 1])
In [30]: indptr = np.concatenate(([0], lengths.cumsum()))
In [31]: indptr
Out[31]: array([0, 2, 2, 5, 8, 9])
indices
is just the flattened version of locations
. Note that sum()
in the following is the Python builtin sum()
function, not np.sum
. That function call concatenates all the lists in locations
.
In [32]: indices = sum(locations, start=[])
In [33]: indices
Out[33]: [2, 3, 1, 3, 5, 0, 1, 7, 7]
The data for the array is an array of 1s that is the same length as indices:
In [38]: data = np.ones_like(indices)
We now have all the pieces we need to create a SciPy csr_matrix
:
In [39]: from scipy.sparse import csr_matrix
In [40]: A = csr_matrix((data, indices, indptr))
In [41]: A
Out[41]:
<5x8 sparse matrix of type '<class 'numpy.int64'>'
with 9 stored elements in Compressed Sparse Row format>
In [42]: A.toarray()
Out[42]:
array([[0, 0, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 1, 0, 1, 0, 0],
[1, 1, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 1]])