I'm trying to run a regression with a constraint to set all coefficients greater than zero. To do this, I am utilizing the nls function. However, I am having an error:
"Error in nls(formula = y ~ . - 1, data = X, start = low, lower = low, : parameters without starting value in 'data': ."
I believe everything is correct here, I tried to set a lower and upper bound on all variables, so I am not sure what is wrong.
Attempt 1:
library(magrittr)
X <- data.frame(
x1 = seq(10),
x2 = seq(10),
x3 = seq(10),
x4 = seq(10),
x5 = seq(10),
y = seq(10)
)
low <- dplyr::select(X, -y) %>% names %>% lapply( function(e) 0)
up <- dplyr::select(X, -y) %>% names %>% lapply( function(e) Inf)
names(low) <- dplyr::select(X, -y) %>% names -> names(up)
fit1 <- nls(formula = y ~ . -1 , data = X,
start = low,
lower = low,
upper = up,
algorithm = "port"
)
Attempt 2:
Here I try to set the formula manually but then I get a new error:
"Error in qr(.swts * gr) :
dims [product 5] do not match the length of object [10]"
library(magrittr)
X <- data.frame(
x1 = seq(10),
x2 = seq(10),
x3 = seq(10),
x4 = seq(10),
x5 = seq(10),
y = seq(10)
)
n <- X %>% dplyr::select( -y ) %>% names %>% paste0( collapse = " + " )
f <- "y ~ %s -1" %>% sprintf( n ) %>% as.formula
low <- dplyr::select(X, -y) %>% names %>% lapply( function(e) 0)
up <- dplyr::select(X, -y) %>% names %>% lapply( function(e) Inf)
names(low) <- dplyr::select(X, -y) %>% names -> names(up)
fit1 <- nls(formula = f , data = X,
start = low,
lower = low,
upper = up,
algorithm = "port"
)
How can I fix this? Thanks!
1) There are several problems here:
Using the above we have
set.seed(123)
X <- data.frame(
x1 = rnorm(10),
x2 = rnorm(10),
x3 = rnorm(10),
x4 = rnorm(10),
x5 = rnorm(10),
y = rnorm(10)
)
fo <- y ~ b1 * x1 + b2 * x2 + b3 * x3 + b4 * x4 + b5 * x5
st <- c(b1 = 1, b2 = 1, b3 = 1, b4 = 1, b5 = 1)
nls(fo, X, start = st, lower = numeric(5), algorithm = "port")
giving:
Nonlinear regression model
model: y ~ b1 * x1 + b2 * x2 + b3 * x3 + b4 * x4 + b5 * x5
data: X
b1 b2 b3 b4 b5
0.0000 0.1222 0.0000 0.2338 0.1457
residual sum-of-squares: 6.477
Algorithm "port", convergence message: relative convergence (4)
2) The nnls (non-negative least squares) package can do this directly. We use X defined in (1).
nnls(as.matrix(X[-6]), X$y)
giving the following
Nonnegative least squares model
x estimates: 0 0.1221646 0 0.2337857 0.1457373
residual sum-of-squares: 6.477
reason terminated: The solution has been computed sucessfully.