I am trying to code a 5 class classifier ANN, and this code return this error:
classifier = Sequential()
classifier.add(Dense(units=10, input_dim=14, kernel_initializer='uniform', activation='relu'))
classifier.add(Dense(units=6, kernel_initializer='uniform', activation='relu'))
classifier.add(Dense(units=5, kernel_initializer='uniform', activation='softmax'))
classifier.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
RD_Model = classifier.fit(X_train,y_train, batch_size=10 , epochs=10, verbose=1)
File "c:\Program Files\Python310\lib\site-packages\keras\backend.py", line 5119, in categorical_crossentropy
target.shape.assert_is_compatible_with(output.shape)
ValueError: Shapes (None, 1) and (None, 5) are incompatible
I figured this is caused because I have a probability matrix instead of an actual output, so I have been trying to apply an argmax, but haven't figured a way
Can someone help me out?
As Dr. Snoopy mentioned, it was indeed a problem of one-hot encoding... I missed to do that, resulting in my model not working.
So I just one hot encoded it:
encoder = LabelEncoder()
encoder.fit(y_train)
encoded_Y = encoder.transform(y_train)
# convert integers to dummy variables (i.e. one hot encoded)
dummy_y = np_utils.to_categorical(encoded_Y)
And it worked after using dummy_y. Thank you for your help.