Search code examples
rmatrixprobabilityfrequencyweighted

Plot weighted frequency matrix


This question is related to two different questions I have asked previously:

1) Reproduce frequency matrix plot

2) Add 95% confidence limits to cumulative plot

I wish to reproduce this plot in R:boringmatrix

I have got this far, using the code beneath the graphic:multiplot

#Set the number of bets and number of trials and % lines
numbet <- 36 
numtri <- 1000 
#Fill a matrix where the rows are the cumulative bets and the columns are the trials
xcum <- matrix(NA, nrow=numbet, ncol=numtri)
for (i in 1:numtri) {
x <- sample(c(0,1), numbet, prob=c(5/6,1/6), replace = TRUE)
xcum[,i] <- cumsum(x)/(1:numbet)
}
#Plot the trials as transparent lines so you can see the build up
matplot(xcum, type="l", xlab="Number of Trials", ylab="Relative Frequency", main="", col=rgb(0.01, 0.01, 0.01, 0.02), las=1)

My question is: How can I reproduce the top plot in one pass, without plotting multiple samples?

Thanks.


Solution

  • You can produce this plot...

    enter image description here

    ... by using this code:

    boring <- function(x, occ) occ/x
    
    boring_seq <- function(occ, length.out){
      x <- seq(occ, length.out=length.out)
      data.frame(x = x, y = boring(x, occ))
    }
    
    numbet <- 31
    odds <- 6
    plot(1, 0, type="n",  
        xlim=c(1, numbet + odds), ylim=c(0, 1),
        yaxp=c(0,1,2),
        main="Frequency matrix", 
        xlab="Successive occasions",
        ylab="Relative frequency"
        )
    
    axis(2, at=c(0, 0.5, 1))    
    
    for(i in 1:odds){
      xy <- boring_seq(i, numbet+1)
      lines(xy$x, xy$y, type="o", cex=0.5)
    }
    
    for(i in 1:numbet){
      xy <- boring_seq(i, odds+1)
      lines(xy$x, 1-xy$y, type="o", cex=0.5)
    }