I am making a stock prediction web app and I am trying to overlay the current data with the forecasted data I have produced using NeuralProphet. Here is my full code right now:
import streamlit as st
from datetime import date
import yfinance as yf
from neuralprophet import NeuralProphet
from plotly import graph_objs as go
START = "2015-01-01"
TODAY = date.today().strftime("%Y-%m-%d")
st.title("Prediction")
stocks = ("AAPL", "GOOG", "MSFT", "GME", "TSLA", "RIVN")
selected_stocks = st.selectbox("Select Dataset for Prediction", stocks)
n_years = st.slider("Years of Prediction:", 1, 10)
period = n_years * 365
@st.cache
def load_data(ticker):
data = yf.download(ticker, START, TODAY)
data.reset_index(inplace=True)
return data
data_load_state = st.text("Load data...")
data = load_data(selected_stocks)
data_load_state.text("Loading data...done!")
st.subheader('Raw Data')
st.write(data.tail())
def plot_raw_data():
global fig
fig = go.Figure()
fig.add_trace(go.Line(x=data['Date'], y=data['Open'], name='stock_open'))
fig.add_trace(go.Line(x=data['Date'], y=data['Close'], name='stock_close'))
fig.layout.update(title_text="Time Series Data", xaxis_rangeslider_visible=True)
st.plotly_chart(fig, use_container_width=True)
plot_raw_data()
# Forecasting
df_train = data[['Date', 'Close']]
df_train = df_train.rename(columns={"Date": "ds", "Close": "y"})
m = NeuralProphet()
metrics = m.fit(df_train)
future = m.make_future_dataframe(df=df_train, periods=period)
forecast = m.predict(df=future)
st.subheader('Forecast data')
st.write(forecast.tail())
st.write('Forecast Data')
fig1 = m.plot(forecast)
st.plotly_chart(fig1, use_container_width=True)
st.write("Forecast Components")
fig2 = m.plot_components(forecast)
st.write(fig2)
I can't seem to figure out what to do. I have tried implementing different st.plotly_chart()
in attempt to overlay two charts, but no such luck... Help.
Add n_historic_predictions=True
param in make_future_dataframe
as in:
future = m.make_future_dataframe(df=df_train, periods=period, n_historic_predictions=True)