I'm trying to solve the following integral using sympy:
v is velocity, C_i is the concentration at the time step t_0. This is what I have so far:
import sympy as smp
from scipy.integrate import quad
to,x = smp.symbols(('to','x'), real=True)
def f(to,x,c,v,t):
return c*smp.DiracDelta((x/v) - t + to)
c_arr = 0.5
v = 0.1
x = 10
tt = x/v
t_arr = np.arange(0,1000,1)
integrals = [[c_arr, v, tt, quad(f, 0, ts, args=(c_arr,v,x,tt))[0]] for ts in t_arr]
I'm not sure how to handle the dt0 and the variables. Any insight is appreciated. I'm using c_arr as a constant in this case to make it simpler, otherwise, it would be an array of values.
This is how you can compute the integral symbolically using SymPy:
In [53]: C_i = Function('C_i')
In [54]: t, t0, x, v = symbols('t, t0, x, v', positive=True)
In [55]: g = lambda x, t: DiracDelta(x/v - t + t0)
In [56]: C_f = Integral(C_i(t0)*g(x,t-t0), (t0, 0, t))
In [57]: C_f
Out[57]:
t
⌠
⎮ ⎛ x⎞
⎮ Cᵢ(t₀)⋅δ⎜-t + 2⋅t₀ + ─⎟ d(t₀)
⎮ ⎝ v⎠
⌡
0
In [58]: C_f.doit()
Out[58]:
⎛t⋅v - x⎞ ⎛-(t⋅v - x) ⎞ ⎛t⋅v - x⎞ ⎛ t⋅v - x⎞
Cᵢ⎜───────⎟⋅θ⎜───────────⎟ Cᵢ⎜───────⎟⋅θ⎜t - ───────⎟
⎝ 2⋅v ⎠ ⎝ 2⋅v ⎠ ⎝ 2⋅v ⎠ ⎝ 2⋅v ⎠
- ────────────────────────── + ──────────────────────────
2 2
In [59]: C_f.doit().simplify()
Out[59]:
⎛ ⎛-t⋅v + x⎞⎞ ⎛t⋅v - x⎞
⎜1 - θ⎜────────⎟⎟⋅Cᵢ⎜───────⎟
⎝ ⎝ 2⋅v ⎠⎠ ⎝ 2⋅v ⎠
─────────────────────────────
2
The theta here is the Heaviside function. Now you just need to evaluate that integral numerically which you can do with lambdify
:
In [73]: C_fs = C_f.doit().simplify()
In [74]: f = lambdify((x, v, t), C_fs, ['scipy', {'C_i': lambda e: 0.5}])
In [75]: f(10, 0.1, t_arr)
Out[75]:
array([0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0.125, 0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 ,
0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 ,
0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 ,
0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 ,
...
If you have an array of values for C_i
then you can just use interpolate to turn that into a callable function.