Given a finite random sequence of bits, how can the minimum number of bit toggles necessary to result in a sorted sequence (i.e. any and all 0's are before any and all 1's) be determined?
Note, homogeneous sequences (e.g. 0000000
and 1111111
) are considered sorted by this definition.
Also, this is not technically "sorting" the sequence because elements are toggled in-place, not restricted to swapping with other elements, is there better word to describe this activity than "sorting"?
Let Z(n) be the cost of setting the first n bits all 0.
Let X(n) be the cost of minimum cost of "sorting" the first n bits.
We have:
Z(0) = 0, X(0) = 0
if the ith bit is 0: Z(i) = Z(i-1), X(i) = min( Z(i-1), X(i-1)+1 )
if the ith bit is 1: Z(i) = Z(i-1)+1, X(i) = X(i-1)
The answer is X(n).
It's even easier in code:
z=0
x=0
for bit in sequence:
if bit == 0:
x = min(z,x+1)
else:
z = z+1
return x