I want to use dataframe.melt function in pandas lib to convert data format from rows into column but keeping first column value. I ve just tried also .pivot, but it is not working good. Please look at the example below and please help:
ID Alphabet Unspecified: 1 Unspecified: 2
0 1 A G L
1 2 B NaN NaN
2 3 C H NaN
3 4 D I M
4 5 E J NaN
5 6 F K O
Into this:
ID Alphabet
0 1 A
1 1 G
2 1 L
3 2 B
4 3 C
5 3 H
6 4 D
7 4 I
8 4 M
9 5 E
10 5 J
11 6 F
12 6 K
11 6 O
One option is with pivot_longer from pyjanitor:
# pip install pyjanitor
import pandas as pd
import janitor
(df
.pivot_longer(
index = 'ID',
names_to = 'Alphabet',
names_pattern = ['.+'],
sort_by_appearance = True)
.dropna()
)
ID Alphabet
0 1 A
1 1 G
2 1 L
3 2 B
6 3 C
7 3 H
9 4 D
10 4 I
11 4 M
12 5 E
13 5 J
15 6 F
16 6 K
17 6 O
In the code above, the names_pattern
accepts a list of regular expression to match the desired columns, all the matches are collated into one column names Alphabet
in names_to
.