This C code
void test_function(int a, int b, int c, int d) {}
int main() {
test_function(1, 2, 3, 4);
return 0;
}
gets compiled by GCC (no flags, version 12.1.1, target x86_64-redhat-linux
) into
0000000000401106 <test_function>:
401106: 55 push rbp
401107: 48 89 e5 mov rbp,rsp
40110a: 89 7d fc mov DWORD PTR [rbp-0x4],edi
40110d: 89 75 f8 mov DWORD PTR [rbp-0x8],esi
401110: 89 55 f4 mov DWORD PTR [rbp-0xc],edx
401113: 89 4d f0 mov DWORD PTR [rbp-0x10],ecx
401116: 90 nop
401117: 5d pop rbp
401118: c3 ret
0000000000401119 <main>:
401119: 55 push rbp
40111a: 48 89 e5 mov rbp,rsp
40111d: b9 04 00 00 00 mov ecx,0x4
401122: ba 03 00 00 00 mov edx,0x3
401127: be 02 00 00 00 mov esi,0x2
40112c: bf 01 00 00 00 mov edi,0x1
401131: e8 d0 ff ff ff call 401106 <test_function>
401136: b8 00 00 00 00 mov eax,0x0
40113b: 5d pop rbp
40113c: c3 ret
Why are additional registers (ecx
, edx
, esi
, edi
) used as intermediary storage for values 1, 2, 3, 4 instead of putting them into rbp
directly?
"as intermediary storage": You confusion seems to be this part.
The ABI specifies that these function arguments are passed in the registers you are seeing (see comments under the question). The registers are not just used as intermediary. The value are never supposed to be put on the stack at all. They stay in the register the whole time, unless the function needs to reuse the register for something else or pass on a pointer to the function parameter or something similar.
What you are seeing in test_function
is just an artifact of not compiling with optimizations enabled. The mov
instructions putting the registers on the stack are pointless, since nothing is done with them afterwards. The stack pointer is just immediately restored and then the function returns.
The whole function should just be a single ret
instruction. See https://godbolt.org/z/qG9GjMohY where -O2
is used.
Without optimizations enabled the compiler makes no attempt to remove instructions even if they are pointless and it always stores values of variables to memory and loads them from memory again, even if they could have been held in registers. That's why it is almost always pointless to look at -O0
assembly.