Looking at the following source code taken from here (SDK v2):
import boto3
import sagemaker
from sagemaker.xgboost.estimator import XGBoost
from sagemaker.session import Session
from sagemaker.inputs import TrainingInput
# initialize hyperparameters
hyperparameters = {
"max_depth":"5",
"eta":"0.2",
"gamma":"4",
"min_child_weight":"6",
"subsample":"0.7",
"verbosity":"1",
"objective":"reg:linear",
"num_round":"50"}
# set an output path where the trained model will be saved
bucket = sagemaker.Session().default_bucket()
prefix = 'DEMO-xgboost-as-a-framework'
output_path = 's3://{}/{}/{}/output'.format(bucket, prefix, 'abalone-xgb-framework')
# construct a SageMaker XGBoost estimator
# specify the entry_point to your xgboost training script
estimator = XGBoost(entry_point = "your_xgboost_abalone_script.py",
framework_version='1.2-2',
hyperparameters=hyperparameters,
role=sagemaker.get_execution_role(),
instance_count=1,
instance_type='ml.m5.2xlarge',
output_path=output_path)
# define the data type and paths to the training and validation datasets
content_type = "libsvm"
train_input = TrainingInput("s3://{}/{}/{}/".format(bucket, prefix, 'train'), content_type=content_type)
validation_input = TrainingInput("s3://{}/{}/{}/".format(bucket, prefix, 'validation'), content_type=content_type)
# execute the XGBoost training job
estimator.fit({'train': train_input, 'validation': validation_input})
I wonder where the your_xgboost_abalone_script.py file has to be placed please? So far I used XGBoost as a built-in algorithm from my local machine with similar code (i.e. I span up a training job remotely). Thanks!
PS:
Looking at this, and source_dir, I wonder if one can upload Python files to S3. In this case, I take it is has to be tar.gz? Thanks!
your_xgboost_abalone_script.py
can be created locally. The path you provide is relative to where the code is running.
I.e. your_xgboost_abalone_script.py
can be located in the same directory where you are running the SageMaker SDK ("source code").
For example if you have your_xgboost_abalone_script.py
in the same directory as the source code:
.
├── source_code.py
└── your_xgboost_abalone_script.py
Then you can point to this file exactly how the documentation depicts:
estimator = XGBoost(entry_point = "your_xgboost_abalone_script.py",
.
.
.
)
The SDK will take your_xgboost_abalone_script.py
repackage it into a model tar ball and upload it to S3 on your behalf.