I am trying to use pymo for a single objective nonlinear optimization problem.
The objective function is to minimize the variance (or standard deviation) of the input variables following certain constraints (which I was able to do in Excel).
Following is a code example of what I am trying to do
model = pyo.ConcreteModel()
# declare decision variables
model.x1 = pyo.Var(domain=pyo.NonNegativeReals)
model.x2 = pyo.Var(domain=pyo.NonNegativeReals)
model.x3 = pyo.Var(domain=pyo.NonNegativeReals)
model.x4 = pyo.Var(domain=pyo.NonNegativeReals)
# declare objective
from statistics import stdev
model.variance = pyo.Objective(
expr = stdev([model.x1, model.x2, model.x3, model.x4]),
sense = pyo.minimize)
# declare constraints
model.max_charging = pyo.Constraint(expr = model.x1 + model.x2 + model.x3 + model.x4 >= 500)
model.max_x1 = pyo.Constraint(expr = model.x1 <= 300)
model.max_x2 = pyo.Constraint(expr = model.x2 <= 200)
model.max_x3 = pyo.Constraint(expr = model.x3 <= 100)
model.max_x4 = pyo.Constraint(expr = model.x4 <= 200)
# solve
pyo.SolverFactory('glpk').solve(model).write()
#print
print("energy_price = ", model.variance())
print(f'Variables = [{model.x1()},{model.x2()},{model.x3()},{model.x4()}]')
The error I get is TypeError: can't convert type 'ScalarVar' to numerator/denominator
The problem seems to be caused by using the stdev
function from statistics.
My assumption is that the models variables x1-x4
are yet to have been assigned a value and that is the main issue. However, I am not sure how to approach this?
So I managed to solve this issue and I am including the solution below. But first, there are a couple of points I would like to highlight
import pyomo.environ as pyo
def variabilityRule(model):
#Calculate mean of all model variables
for index in model.x:
mean += model.x[index]
mean = mean/len(model.x)
#Calculate the difference between each model variable and the mean
obj_exp = ((model.x[1])-mean) * ((model.x[1])-mean)
for i in range(2, len(model.x)+1): #note that pyomo variables start from 1 not zero
obj_exp += ((model.x[i])-mean) * ((model.x[i])-mean)
#Divide by number of items
obj_exp = (obj_exp/(len(model.x)))
return obj_exp
model = pyo.ConcreteModel()
model.objective = pyo.Objective(
rule = variabilityRule,
sense = pyo.maximize)
obj_exp = obj_exp ** 0.5
...
model.x = pyo.VarList(domain=pyo.NonNegativeReals)
for i in range(0, len(input_array)):
model.x.add()