I am trying to replicate the plot demonstrated in this guide, where a confidence ellipse is shown on top of a scatter plot, along with the eigen vectors. After scavenging the internet for a Python example without success.
I decided to port the Matlab code provided in the article to Python.
I am sharing my work as I could not find a similar example. Here is the resulting plot:
Here is my Python code:
import traceback
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
from numpy import linalg as LA
import matplotlib.transforms as transforms
def plot_ellipse():
# Create some random data
s = np.array([2,2])
x = np.random.randn(334);
y1 = np.random.normal(s[0] * x, 1)
y2 = np.random.normal(s[1] * x, 1)
data = np.array([y1,y2])
# Calculate the eigenvectors and eigenvalues
covariance = np.cov(data)
eigenval, eigenvec = LA.eig(covariance)
# Get the largest eigenvalue
largest_eigenval = max(eigenval)
# Get the index of the largest eigenvector
largest_eigenvec_ind_c = np.argwhere(eigenval == max(eigenval))[0][0]
largest_eigenvec = eigenvec[:,largest_eigenvec_ind_c]
# Get the smallest eigenvector and eigenvalue
smallest_eigenval = min(eigenval)
if largest_eigenvec_ind_c == 0:
smallest_eigenvec = eigenvec[:,1]
else:
smallest_eigenvec = eigenvec[:,0]
# Calculate the angle between the x-axis and the largest eigenvector
angle = np.arctan2(largest_eigenvec[1], largest_eigenvec[0]);
# This angle is between -pi and pi.
# Let's shift it such that the angle is between 0 and 2pi
if (angle < 0):
angle = angle + 2*np.pi;
# Get the coordinates of the data mean
avg_0 = np.mean(data[0]);
avg_1 = np.mean(data[1]);
#% Get the 95% confidence interval error ellipse
chisquare_val = 2.4477;
X0=avg_0;
Y0=avg_1;
ax=plt.gca()
pearson = covariance[0, 1]/np.sqrt(covariance[0, 0] * covariance[1, 1])
ell_radius_x = np.sqrt(1 + pearson)
ell_radius_y = np.sqrt(1 - pearson)
ellipse = Ellipse((0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2, facecolor='none', edgecolor=(1, 0, 0.2))
scale_x = np.sqrt(covariance[0, 0] * chisquare_val)
mean_x = X0
scale_y = np.sqrt(covariance[1, 1] * chisquare_val)
mean_y = Y0
transf = transforms.Affine2D().rotate_deg(45).scale(scale_x, scale_y).translate(mean_x, mean_y)
ellipse.set_transform(transf + ax.transData)
ax.add_patch(ellipse)
# Plot the original data
plt.plot(data[0],data[1], '.');
plt.xlim([min(data[0])-3, max(data[0])+3]);
plt.ylim([min(data[1])-3, max(data[1])+3]);
# Plot the eigenvectors
quiveropts = dict(headaxislength=0, color='red', headlength=0, units='xy',angles='xy',scale=1)
plt.quiver(X0, Y0, largest_eigenvec[0]*np.sqrt(largest_eigenval), largest_eigenvec[1]*np.sqrt(largest_eigenval), **quiveropts)
plt.quiver(X0, Y0, smallest_eigenvec[0]*np.sqrt(smallest_eigenval), smallest_eigenvec[1]*np.sqrt(smallest_eigenval), **quiveropts)
plt.show()
return
if __name__ == '__main__':
try:
plot_ellipse()
except Exception as e:
print("Caught exception:" + str(e))
print(traceback.format_exc())