Let's say I have a boolean column stored as a category
in a pandas.DataFrame
. But there's a twist - the underlying values are str
, not bool
. I.e., the values are "True"
/"False"
, not True
/False
.
How do I:
"True"
to True
) andcategory
?Having the boolean values as strings is an issue with DataFrame.query
, for example. I have to specify DataFrame.query("field == 'True'")
, which is pretty horrendous lol.
FYI - I don't want to do DataFrame.astype(dict(field=bool))
, because then i lose the memory efficiency from category
. i want to keep the category dtype.
Maybe you can try:
df['field'] = df['field'].replace({'True': True, 'False': False})
print(df['field'])
# Output
0 False
1 True
2 True
3 False
Name: field, dtype: category
Categories (2, object): [False, True] # <- bool
With query
:
>>> df.query('field == True')
field
1 True
2 True
Setup:
df = pd.DataFrame({'field': ['False', 'True', 'True', 'False']}, dtype='category')
print(df['field'])
# Output
0 False
1 True
2 True
3 False
Name: field, dtype: category
Categories (2, object): ['False', 'True'] # <- str