Search code examples
pythonlogicartificial-intelligenceboolean-logicboolean-expression

CS50's Introduction to Artificial Intelligence with Python - Knowledge


I'm studyng Harvard's Introduction to Artificial Intelligence with Python course. I'm enjoying a lot. However I downloaded logic file to use Boolean algebra and Knowledge, that simple operations (OR,AND,NOT...) Before I show my doubt I will share the Knowledge class from harvard source code, I hope there isn't issues on it:

link to this class:

Harvard class

logic.py

import itertools


class Sentence():

    def evaluate(self, model):
        """Evaluates the logical sentence."""
        raise Exception("nothing to evaluate")

    def formula(self):
        """Returns string formula representing logical sentence."""
        return ""

    def symbols(self):
        """Returns a set of all symbols in the logical sentence."""
        return set()

    @classmethod
    def validate(cls, sentence):
        if not isinstance(sentence, Sentence):
            raise TypeError("must be a logical sentence")

    @classmethod
    def parenthesize(cls, s):
        """Parenthesizes an expression if not already parenthesized."""
        def balanced(s):
            """Checks if a string has balanced parentheses."""
            count = 0
            for c in s:
                if c == "(":
                    count += 1
                elif c == ")":
                    if count <= 0:
                        return False
                    count -= 1
            return count == 0
        if not len(s) or s.isalpha() or (
            s[0] == "(" and s[-1] == ")" and balanced(s[1:-1])
        ):
            return s
        else:
            return f"({s})"


class Symbol(Sentence):

    def __init__(self, name):
        self.name = name

    def __eq__(self, other):
        return isinstance(other, Symbol) and self.name == other.name

    def __hash__(self):
        return hash(("symbol", self.name))

    def __repr__(self):
        return self.name

    def evaluate(self, model):
        try:
            return bool(model[self.name])
        except KeyError:
            raise Exception(f"variable {self.name} not in model")

    def formula(self):
        return self.name

    def symbols(self):
        return {self.name}


class Not(Sentence):
    def __init__(self, operand):
        Sentence.validate(operand)
        self.operand = operand

    def __eq__(self, other):
        return isinstance(other, Not) and self.operand == other.operand

    def __hash__(self):
        return hash(("not", hash(self.operand)))

    def __repr__(self):
        return f"Not({self.operand})"

    def evaluate(self, model):
        return not self.operand.evaluate(model)

    def formula(self):
        return "¬" + Sentence.parenthesize(self.operand.formula())

    def symbols(self):
        return self.operand.symbols()


class And(Sentence):
    def __init__(self, *conjuncts):
        for conjunct in conjuncts:
            Sentence.validate(conjunct)
        self.conjuncts = list(conjuncts)

    def __eq__(self, other):
        return isinstance(other, And) and self.conjuncts == other.conjuncts

    def __hash__(self):
        return hash(
            ("and", tuple(hash(conjunct) for conjunct in self.conjuncts))
        )

    def __repr__(self):
        conjunctions = ", ".join(
            [str(conjunct) for conjunct in self.conjuncts]
        )
        return f"And({conjunctions})"

    def add(self, conjunct):
        Sentence.validate(conjunct)
        self.conjuncts.append(conjunct)

    def evaluate(self, model):
        return all(conjunct.evaluate(model) for conjunct in self.conjuncts)

    def formula(self):
        if len(self.conjuncts) == 1:
            return self.conjuncts[0].formula()
        return " ∧ ".join([Sentence.parenthesize(conjunct.formula())
                           for conjunct in self.conjuncts])

    def symbols(self):
        return set.union(*[conjunct.symbols() for conjunct in self.conjuncts])


class Or(Sentence):
    def __init__(self, *disjuncts):
        for disjunct in disjuncts:
            Sentence.validate(disjunct)
        self.disjuncts = list(disjuncts)

    def __eq__(self, other):
        return isinstance(other, Or) and self.disjuncts == other.disjuncts

    def __hash__(self):
        return hash(
            ("or", tuple(hash(disjunct) for disjunct in self.disjuncts))
        )

    def __repr__(self):
        disjuncts = ", ".join([str(disjunct) for disjunct in self.disjuncts])
        return f"Or({disjuncts})"

    def evaluate(self, model):
        return any(disjunct.evaluate(model) for disjunct in self.disjuncts)

    def formula(self):
        if len(self.disjuncts) == 1:
            return self.disjuncts[0].formula()
        return " ∨  ".join([Sentence.parenthesize(disjunct.formula())
                            for disjunct in self.disjuncts])

    def symbols(self):
        return set.union(*[disjunct.symbols() for disjunct in self.disjuncts])


class Implication(Sentence):
    def __init__(self, antecedent, consequent):
        Sentence.validate(antecedent)
        Sentence.validate(consequent)
        self.antecedent = antecedent
        self.consequent = consequent

    def __eq__(self, other):
        return (isinstance(other, Implication)
                and self.antecedent == other.antecedent
                and self.consequent == other.consequent)

    def __hash__(self):
        return hash(("implies", hash(self.antecedent), hash(self.consequent)))

    def __repr__(self):
        return f"Implication({self.antecedent}, {self.consequent})"

    def evaluate(self, model):
        return ((not self.antecedent.evaluate(model))
                or self.consequent.evaluate(model))

    def formula(self):
        antecedent = Sentence.parenthesize(self.antecedent.formula())
        consequent = Sentence.parenthesize(self.consequent.formula())
        return f"{antecedent} => {consequent}"

    def symbols(self):
        return set.union(self.antecedent.symbols(), self.consequent.symbols())


class Biconditional(Sentence):
    def __init__(self, left, right):
        Sentence.validate(left)
        Sentence.validate(right)
        self.left = left
        self.right = right

    def __eq__(self, other):
        return (isinstance(other, Biconditional)
                and self.left == other.left
                and self.right == other.right)

    def __hash__(self):
        return hash(("biconditional", hash(self.left), hash(self.right)))

    def __repr__(self):
        return f"Biconditional({self.left}, {self.right})"

    def evaluate(self, model):
        return ((self.left.evaluate(model)
                 and self.right.evaluate(model))
                or (not self.left.evaluate(model)
                    and not self.right.evaluate(model)))

    def formula(self):
        left = Sentence.parenthesize(str(self.left))
        right = Sentence.parenthesize(str(self.right))
        return f"{left} <=> {right}"

    def symbols(self):
        return set.union(self.left.symbols(), self.right.symbols())


def model_check(knowledge, query):
    """Checks if knowledge base entails query."""

    def check_all(knowledge, query, symbols, model):
        """Checks if knowledge base entails query, given a particular model."""

        # If model has an assignment for each symbol
        if not symbols:

            # If knowledge base is true in model, then query must also be true
            if knowledge.evaluate(model):
                return query.evaluate(model)
            return True
        else:

            # Choose one of the remaining unused symbols
            remaining = symbols.copy()
            p = remaining.pop()

            # Create a model where the symbol is true
            model_true = model.copy()
            model_true[p] = True

            # Create a model where the symbol is false
            model_false = model.copy()
            model_false[p] = False

            # Ensure entailment holds in both models
            return (check_all(knowledge, query, remaining, model_true) and
                    check_all(knowledge, query, remaining, model_false))

    # Get all symbols in both knowledge and query
    symbols = set.union(knowledge.symbols(), query.symbols())

    # Check that knowledge entails query
    return check_all(knowledge, query, symbols, dict())

I know it's too much code, but my doubt is very simple, I tested basic Knowledge Boolean algebra operations such as NOT, AND, and OR. The problem is only at OR fucntion, it always should return TRUE if at least one is true. But it's returning false.

from logic import *

a = Symbol("a")
b = Symbol("b")

# OR
# Error here
orSentence = Or(a, b)
valueOrSentence = model_check(orSentence, a)
print(orSentence.formula() + f" ({valueOrSentence})")
valueOrSentence = model_check(orSentence,  Not(a))
print(orSentence.formula() + f" ({valueOrSentence})")
print('---/---/---/')

It should return "true" when check the model, but instead of it it's returning "false"

I prefer to belive there is no error on Harvard logic.py file, what should I do to fix this "OR" logic?


Solution

  • For one specific case of model your knowledge entails but query doesn't, hence it is returning False. There is nothing wrong with it.

    When model = {'a': False, 'b': True} then orSentence.evaluate(model) would return True but a.evaluate(model) would return False making the overall result of model_check as False.

    If you use andSentence = And(a, b) and then run model_check(andSentence, a), it would return True because for every value of model either andSentence (knowledge) and a (query) both are True or both are False.