I wrote a python script that should have a data frame as output, but it does not show any output. Below is the python code:
import pandas as pd
import numpy as np
import ipywidgets as widgets
import datetime
from ipywidgets import interactive
from IPython.display import display, Javascript
from datetime import date, timedelta
from random import choices
books = ["Book_1","Book_2","Book_3","Book_4","Book_5"]
counterparties = ["Counterparty_1","Counterparty_2","Counterparty_3","Counterparty_4","Counterparty_5"]
book = choices(books, k = 100)
counterparty = choices(counterparties, k = 100)
date1, date2 = date(2018, 8, 1), date(2023, 8, 3)
res_dates = [date1]
while date1 != date2:
date1 += timedelta(days=1)
res_dates.append(date1)
ldd = choices(res_dates, k=100)
dict = {'book': book, 'counterparty': counterparty, 'last_trading_date': ldd}
df = pd.DataFrame(dict)
books = pd.Categorical(df['book'])
books = books.categories
books_dropdown = widgets.Dropdown(
options=books,
value=books[0],
description='Book:',
disabled=False,
)
counterparty = pd.Categorical(df['counterparty'])
counterparty = counterparty.categories
counter_dropdown = widgets.Dropdown(
options=counterparty,
value=counterparty[0],
description='Counterparty:',
disabled=False,
)
date_picker = widgets.DatePicker(
description='Pick a Date',
disabled=False,
)
date_picker.add_class("start-date")
script = Javascript("\
const query = '.start-date > input:first-of-type'; \
document.querySelector(query).setAttribute('min', '2020-12-01'); \
document.querySelector(query).setAttribute('max', '2025-01-01'); \
")
box = widgets.VBox([books_dropdown, counter_dropdown, date_picker])
display(box)
def filter_function(bookcode, cpartycode, datecode):
filtered = df[(df['book'] == bookcode) & (df['counterparty'] == cpartycode)]
x = datetime.date(datecode.value)
filtered = filtered[filtered['last_trading_date'] < x]
with report_output:
report_output.clear_output()
display(filtered)
interactive(filter_function, bookcode=books_dropdown, cpartycode=counter_dropdown, datecode=date_picker)
report_output = widgets.Output()
display(report_output)
What this does is basically take a data frame, subset the said data frame into a smaller data frame based on categories of two variables, and truncate the resulting data frame based on a date selected by the user.
Did I make a mistake somewhere? If so, can someone point to me where? Thank you in advance.
Edit:
After many attempts I came to the conclusion that the problem is related to the DatePicker
widget. So you can focus on that when trying to solve the problem.
Here is the code I used to reproduce the issue if I understand it correctly:
from datetime import date, timedelta
from random import choices
import pandas as pd
import ipywidgets as widgets
import datetime
from ipywidgets import interactive
from IPython.display import display, Javascript
books = ["Book_1","Book_2","Book_3","Book_4","Book_5"]
counterparties = ["Counterparty_1","Counterparty_2","Counterparty_3","Counterparty_4","Counterparty_5"]
book = choices(books, k = 100)
counterparty = choices(counterparties, k = 100)
date1, date2 = date(2018, 8, 1), date(2023, 8, 3)
res_dates = [date1]
while date1 != date2:
date1 += timedelta(days=1)
res_dates.append(date1)
ldd = choices(res_dates, k=100)
dict = {'book': book, 'counterparty': counterparty, 'last_trading_date': ldd}
df = pd.DataFrame(dict)
df['last_trading_date'] = pd.to_datetime(df['last_trading_date'], format = '%Y-%m-%d').dt.date
books = pd.Categorical(df['book'])
books = books.categories
books_dropdown = widgets.Dropdown(
options=books,
value=books[0],
description='Book:',
disabled=False,)
counterparty = pd.Categorical(df['counterparty'])
counterparty = counterparty.categories
counter_dropdown = widgets.Dropdown(
options=counterparty,
value=counterparty[0],
description='Counterparty:',
disabled=False,
)
date_picker = widgets.DatePicker(
description='Pick a Date',
disabled=False,
)
date_picker.add_class("start-date")
script = Javascript("\
const query = '.start-date > input:first-of-type'; \
document.querySelector(query).setAttribute('min', '2020-12-01'); \
document.querySelector(query).setAttribute('max', '2025-01-01'); \
")
def filter_function(bookcode, cpartycode, datecode):
filtered = df[(df['book'] == bookcode) & (df['counterparty'] == cpartycode)]
filtered = filtered[filtered['last_trading_date'] < datecode]
with report_output:
report_output.clear_output()
display(filtered)
w = interactive(filter_function, bookcode=books_dropdown, cpartycode=counter_dropdown, datecode=date_picker)
display(w)
report_output = widgets.Output()
display(report_output)
Using the widget that's displayed when the code is run in Jupyter Notebook, I get the following output:
Only changes that I made in the code provided by you are:
display()
to display it.datecode
argument to filtered_function
for creating filtered
instead of using datetime.date(datecode.value)
.