Search code examples
python-3.xpandasdata-transform

How to check specific columns for values and assign weighted integer values when checking against variables of lists


I have a dataset containing diagnosis columns (DIAGX1-DIAGX42) for patients and I need to create a variable that sums the values for these based on weights from an external index.

df_patients

patients = [('pat1', 'Z509', 'M33', 'M32', 'M315'),
         ('pat2', 'I099', 'I278', 'M05', 'F01'),
         ('pat3', 'N057', 'N057', 'N058', 'N057')]
labels = ['patient_num', 'DIAGX1', 'DIAGX2', 'DIAGX3', 'DIAGX4']
df_patients = pd.DataFrame.from_records(patients, columns=labels)
df_patients

Input
patient_num DIAGX1  DIAGX2  DIAGX3  DIAGX4
pat1        Z509    M33     M32     M315
pat2        I099    I278    M05     F01
pat3        N057    N057    N058    N057

Output
patient_num DIAGX1  DIAGX2  DIAGX3  DIAGX4 Score
pat1        Z509    M33     M32     M315   1
pat2        I099    I278    M05     F01    6
pat3        N057    N057    N058    N057   0

external_index, where if a column from the dataset above contains a value in any of the below that the value would be added. Only one member contributes to a value been given, e.g a value of both F01, F02 both in dementia will only result in 2 being allocated for that record/patient, values are only added/summed if they occur across grouped indexes e.g. F01=2 and I099=1 sum to 3

  1. congestive_heart_failure = 2
  2. dementia = 2
  3. chronic_pulmonary_disease= 1
  4. rheumatologic_disease = 1
congestive_heart_failure = [
    "I099",
    "I255",
    "I420",
    "I425",
    "I426",
    "I427",
    "I428",
    "I429",
    "I43",
    "I50",
    "P290",
]
dementia = ["F01", "F02", "F03", "F051", "G30", "G311"]
chronic_pulmonary_disease = [
    "I278",
    "I279",
    "J40",
    "J41",
    "J42",
    "J43",
    "J44",
    "J45",
    "J47",
    "J60",
    "J61",
    "J62",
    "J63",
    "J64",
    "J65",
    "J66",
    "J67",
    "J684",
    "J701",
    "J703",
]
rheumatologic_disease = [
    "M05",
    "M06",
    "M315",
    "M32",
    "M33",
    "M34",
    "M351",
    "M353",
    "M360",
]

Solution

  • Annotated code

    idx = {
        'dementia': dementia,
        'rheumatologic_disease': rheumatologic_disease,
        'congestive_heart_failure': congestive_heart_failure,
        'chronic_pulmonary_disease': chronic_pulmonary_disease,
    }
    mapping = {v: k for k, vals in idx.items() for v in vals}
    
    weights = {
        'dementia': 2,
        'rheumatologic_disease': 1,
        'congestive_heart_failure': 2,
        'chronic_pulmonary_disease': 1,
    }
    
    # Convert the dataframe into long format
    df = df_patients.melt('patient_num')
    
    # Substitute disease name inplace of codes
    df['value'] = df['value'].map(mapping)
    
    # Drop dupes per patient and disease
    df = df.drop_duplicates(['patient_num', 'value'])
    
    # Map the weights assigned to diseases
    df['value'] = df['value'].map(weights)
    
    # Sum the weights per patient and map it back to original dataframe
    df_patients['Score'] = df['patient_num'].map(df.groupby('patient_num')['value'].sum())
    

    Result

      patient_num DIAGX1 DIAGX2 DIAGX3 DIAGX4  Score
    0        pat1   Z509    M33    M32   M315    1.0
    1        pat2   I099   I278    M05    F01    6.0
    2        pat3   N057   N057   N058   N057    0.0