i'll explain for simple example then go into the deep if i have a list of number consist of
t_original = [180,174,168,166,162,94,70,80,128,131,160,180]
if we graph this so it goes down from 180 to 70 then it ups to 180 again
but if we suddenly change the fourth value (166) by 450 then the list will be
t = [180,174,168,700,162,94,70,80,128,131,160,180]
which dose not make sense in the graph
i wanna treat the fourth value (700) as a wrong value i want to replace it with a relative value even if not as the original value but relative to the previous two elements (168,174) i wanna do the same for the whole list if another wrong value appeared again
we can call that [Filling gaps between list of numbers]
so i'm tryig to do the same idea but for bigger example
the method i have tried
and i'll share my code with output , filtered means applied filling gap function
my code
def preprocFN(*U):
prePlst=[] # after preprocessing list
#preprocessing Fc =| 2*LF1 prev by 1 - LF2 prev by 2 |
c0 = -2 #(previous) by 2
c1 =-1 #(previous)
c2 =0 #(current)
c3 = 1 #(next)
preP = U[0] # original list
if c2 == 0:
prePlst.append(preP[0])
prePlst.append(preP[1])
c1+=2
c2+=2
c0+=2
oldlen = len(preP)
while oldlen > c2:
Equ = abs(2*preP[c1] - preP[c0]) #fn of preprocessing #removed abs()
formatted_float = "{:.2f}".format(Equ) #with .2 number only
equu = float(formatted_float) #from string float to float
prePlst.insert(c2,equu) # insert the preprocessed value to the List
c1+=1
c2+=1
c0+=1
return prePlst
with my input : https://textuploader.com/t1py9
the output will be : https://textuploader.com/t1pyk
and when printing the values higher than 180 (wrong values)
result_list = [item for item in list if item > 180]
which dosen't make sense that any joint of human can pass the angle of 180
the output was [183.6, 213.85, 221.62, 192.05, 203.39, 197.22, 188.45, 182.48, 180.41, 200.09, 200.67, 198.14, 199.44, 198.45, 200.55, 193.25, 204.19, 204.35, 200.59, 211.4, 180.51, 183.4, 217.91, 218.94, 213.79, 205.62, 221.35, 182.39, 180.62, 183.06, 180.78, 231.09, 227.33, 224.49, 237.02, 212.53, 207.0, 212.92, 182.28, 254.02, 232.49, 224.78, 193.92, 216.0, 184.82, 214.68, 182.04, 181.07, 234.68, 233.63, 182.84, 193.94, 226.8, 223.69, 222.77, 180.67, 184.72, 180.39, 183.99, 186.44, 233.35, 228.02, 195.31, 183.97, 185.26, 182.13, 207.09, 213.21, 238.41, 229.38, 181.57, 211.19, 180.05, 181.47, 199.69, 213.59, 191.99, 194.65, 190.75, 199.93, 221.43, 181.51, 181.42, 180.22]
so the filling gaps fn from proposed method dosen't do it's job any suggestion for applying the same concept with a different way ?
Extra Info may help
the filtered graph consists of filling gap function and then applying normalize function i don't think the problem is from the normalizing function since the output from the filling gaps function isn't correct in my opinion maybe i'm wrong but anyway i provide the normalize steps so you get how the final filtered graph has been made
fn :
My Code :
def outLiersFN(*U):
outliers=[] # after preprocessing list
#preprocessing Fc =| 2*LF1 prev by 1 - LF2 prev by 2 |
c0 = -2 #(previous) by 2 #from original
c1 =-1 #(previous) #from original
c2 =0 #(current) #from original
c3 = 1 #(next) #from original
preP = U[0] # original list
if c2 == 0:
outliers.append(preP[0])
c1+=1
c2+=1
c0+=1
c3+=1
oldlen = len(preP)
M_RangeOfMotion = 90
while oldlen > c2 :
if c3 == oldlen:
outliers.insert(c2, preP[c2]) #preP[c2] >> last element in old list
break
if (preP[c2] > M_RangeOfMotion and preP[c2] < (preP[c1] + preP[c3])/2) or (preP[c2] < M_RangeOfMotion and preP[c2] > (preP[c1] + preP[c3])/2): #Check Paper 3.3.1
Equ = (preP[c1] + preP[c3])/2 #fn of preprocessing # From third index # ==== inserting current frame
formatted_float = "{:.2f}".format(Equ) #with .2 number only
equu = float(formatted_float) #from string float to float
outliers.insert(c2,equu) # insert the preprocessed value to the List
c1+=1
c2+=1
c0+=1
c3+=1
else :
Equ = preP[c2] # fn of preprocessing #put same element (do nothing)
formatted_float = "{:.2f}".format(Equ) # with .2 number only
equu = float(formatted_float) # from string float to float
outliers.insert(c2, equu) # insert the preprocessed value to the List
c1 += 1
c2 += 1
c0 += 1
c3 += 1
return outliers
I suggest the following algorithm:
t[i]
is considered an outlier if it deviates from the average of t[i-2], t[i-1], t[i], t[i+1], t[i+2]
by more than the standard deviation of these 5 elements.import matplotlib.pyplot as plt
from statistics import mean, stdev
t = [180,174,168,700,162,94,70,80,128,131,160,180]
def smooth(t):
new_t = []
for i, x in enumerate(t):
neighbourhood = t[max(i-2,0): i+3]
m = mean(neighbourhood)
s = stdev(neighbourhood, xbar=m)
if abs(x - m) > s:
x = ( t[i - 1 + (i==0)*2] + t[i + 1 - (i+1==len(t))*2] ) / 2
new_t.append(x)
return new_t
new_t = smooth(t)
plt.plot(t)
plt.plot(new_t)
plt.show()