A protected division is a normal division but when you divide by 0 it returns a fixed constant (usually 1).
def protected_div(x, y):
if y == 0:
return 1
return x/y
Is there a way to use this as an operator on sympy (For example replacing the standard division)?
Here is an example of what I want:
>>> import sympy as sym
>>> x = sym.Symbol('x')
>>> expr = 1/x #(protected division goes here?)
>>> expr.subs(x, 0)
1
The division has to be protected at evaluation time.
EDIT 1:
What I've tried:
1. Using sym.lambidify with the modules parameter set:
>>> x = sym.Symbol('x')
>>> expr = 1/x
>>> lamb = sym.lambdify(x, expr, modules={'/':protected_div})
>>> print(lamb(0))
ZeroDivisionError: 0.0 cannot be raised to a negative power
This does not work because sympy converts 1/x
to x**(-1)
when lambidifying. I tried overriding the power operator but I don't know the function name. I've tried 'Pow', 'pow', '**' and none worked.
However if i declare the expression as expr = 1.0/x
it actually does not convert to a negative power, however it does not use my custom division function. I think these types of functions are not overridable using the module
parameter.
2. @Zaz suggestion:
class floatsafe(float):
def __truediv__(self, __x):
if __x == 0:
return floatsafe(1)
return super().__truediv__(__x)
x = sym.Symbol('x')
expr = floatsafe(1)/x
print(expr.subs(x, floatsafe(0)))
Returns
zoo
Which is complex infinity.
I tried combining this approach with sym.lambdify
, but the dividend is converted to a float after I lambdify the function.
In the case that the dividend is variable it also does not work:
x = sym.Symbol('x')
expr = x/0.0
a = sym.lambdify(x, expr, modules={'/':floatsafe.__truediv__})
print(inspect.getsource(a))
print(a(floatsafe(0)))
Outputs
def _lambdifygenerated(x):
return nan*x
nan
EDIT: There seems to some confusion around why I'd want that. It's for a genetic programming algorithm using sympy. A protected division is a common operator in GP so that the created solutions are valid.
The solution was pretty simple actually, although I was not able to actualy overload the division operator all I had to do was create a sympy function for the protected division and use that instead.
class protected_division(sym.Function):
@classmethod
def eval(cls, x, y):
if y.is_Number:
if y.is_zero:
return sym.S.One
else:
return x/y
Then just use that in an expression:
>>> expr = protected_division(1, sym.Symbol('x'))
protected_division(1, x)
>>> expr.subs(sym.Symbol('x'), 0)
1
>>> expr.subs(sym.Symbol('x'), 3)
1/3
I did not find out how to make the class tell sym.lambdify
what to do in case of a "lambdification", but you can use the modules
parameters for that:
>>> def pd(x, y):
... if y == 0:
... return 1
... return x/y
...
>>> l = sym.lambdify(sym.Symbol('x'), expr, modules={'protected_division': pd})
>>> l(3)
1.6666666666666667
>>> l(0)
1