I want to do a grid search of some few hyperparameters through a XGBClassifier of a binary class, but whenever i run it the score value (roc_auc
) is not being display. I read in other question that this can be related to some error in model training but i am not sure which one is in this case.
My model training data X_train
is a np.array
of (X, 19)
and my y_train
is a numpy.ndarray
of shape (X, )
which looks like this
And then i create my model params and model in this way
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import StratifiedKFold
from xgboost import XGBClassifier
# A parameter grid for XGBoost
params = {
'min_child_weight': [1, 5, 10],
'gamma': [0.5, 1, 1.5, 2, 5],
}
xgb = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
folds = 3
param_comb = 5
skf = StratifiedKFold(n_splits=folds, shuffle = True, random_state = 1001)
random_search = RandomizedSearchCV(xgb,
param_distributions=params,
n_iter=param_comb,
scoring='roc_auc',
n_jobs=4,
cv=skf.split(X_train, y_train),
verbose=3,
random_state=1001)
random_search.fit(X_train, y_train)
Whenever i hit code from above i am seeing this display which doesnt contain the scoring
[CV 3/3] END ..................gamma=0.5, min_child_weight=5; total time= 3.6min
[CV 1/3] END ..................gamma=0.5, min_child_weight=1; total time= 3.7min
[CV 3/3] END .................gamma=0.5, min_child_weight=10; total time= 3.5min
[CV 1/3] END ....................gamma=2, min_child_weight=5; total time= 3.6min
[CV 2/3] END ..................gamma=0.5, min_child_weight=1; total time= 3.5min
[CV 2/3] END .................gamma=0.5, min_child_weight=10; total time= 3.4min
[CV 2/3] END ..................gamma=1.5, min_child_weight=5; total time= 2.5min
[CV 2/3] END ..................gamma=0.5, min_child_weight=5; total time= 3.5min
[CV 2/3] END ....................gamma=2, min_child_weight=5; total time= 3.4min
[CV 3/3] END ..................gamma=0.5, min_child_weight=1; total time= 3.6min
[CV 1/3] END ..................gamma=1.5, min_child_weight=5; total time= 2.5min
[CV 1/3] END ..................gamma=0.5, min_child_weight=5; total time= 3.6min
[CV 3/3] END ....................gamma=2, min_child_weight=5; total time= 3.5min
[CV 1/3] END .................gamma=0.5, min_child_weight=10; total time= 3.4min
[CV 3/3] END ..................gamma=1.5, min_child_weight=5; total time= 2.5min
The results of the evaluations for each fold are stored in the RandomizedSearchCV
instance after fitting. Access them using the cv_results_
attribute:
# Access CV validation scores.
print(random_search.cv_results_)
Note that you can also access the best estimator with:
best_estimator = random_search.best_estimator_
More in the documentation of RandomizedSearchCV
.