Consider this simple-minded recursive implementation of comp
in Clojure:
(defn my-comp
([f]
(fn [& args]
(apply f args)))
([f & funcs]
(fn [& args]
(f (apply (apply my-comp funcs) args)))))
The right way to do this, I am told, is using recur
, but I am unsure how recur
works. In particular: is there a way to coax the code above into being recur
able?
evaluation 1
First let's visualize the problem. my-comp
as it is written in the question will create a deep stack of function calls, each waiting on the stack to resolve, blocked until the the deepest call returns -
((my-comp inc inc inc) 1)
((fn [& args]
(inc (apply (apply my-comp '(inc inc)) args))) 1)
(inc (apply (fn [& args]
(inc (apply (apply my-comp '(inc)) args))) '(1)))
(inc (inc (apply (apply my-comp '(inc)) '(1))))
(inc (inc (apply (fn [& args]
(apply inc args)) '(1))))
(inc (inc (apply inc '(1)))) ; ⚠️ deep in the hole we go...
(inc (inc 2))
(inc 3)
4
tail-recursive my-comp
Rather than creating a long sequence of functions, this my-comp
is refactored to return a single function, which when called, runs a loop
over the supplied input functions -
(defn my-comp [& fs]
(fn [init]
(loop [acc init [f & more] fs]
(if (nil? f)
acc
(recur (f acc) more))))) ; 🐍 tail recursion
((my-comp inc inc inc) 1)
;; 4
((apply my-comp (repeat 1000000 inc)) 1)
;; 1000001
evaluation 2
With my-comp
rewritten to use loop
and recur
, we can see linear iterative evaluation of the composition -
((my-comp inc inc inc) 1)
(loop 1 (list inc inc inc))
(loop 2 (list inc inc))
(loop 3 (list inc))
(loop 4 nil)
4
multiple input args
Did you notice ten (10) apply
calls at the beginning of this post? This is all in service to support multiple arguments for the first function in the my-comp
sequence. It is a mistake to tangle this complexity with my-comp
itself. The caller has control to do this if it is the desired behavior.
Without any additional changes to the refactored my-comp
-
((my-comp #(apply * %) inc inc inc) '(3 4)) ; ✅ multiple input args
Which evaluates as -
(loop '(3 4) (list #(apply * %) inc inc inc))
(loop 12 (list inc inc inc))
(loop 13 (list inc inc))
(loop 14 (list inc))
(loop 15 nil)
15
right-to-left order
Above (my-comp a b c)
will apply a
first, then b
, and finally c
. If you want to reverse that order, a naive solution would be to call reverse
at the loop
call site -
(defn my-comp [& fs]
(fn [init]
(loop [acc init [f & more] (reverse fs)] ; ⚠️ naive
(if (nil? f)
acc
(recur (f acc) more)))))
Each time the returned function is called, (reverse fs)
will be recomputed. To avoid this, use a let
binding to compute the reversal just once -
(defn my-comp [& fs]
(let [fs (reverse fs)] ; ✅ reverse once
(fn [init]
(loop [acc init [f & more] fs]
(if (nil? f)
acc
(recur (f acc) more))))))