I am trying to do some calculations with python, where I ran out of memory. Therefore, I want to read/write a file in order to free memory. I need a something like a very big list object, so I thought writing a line for each object in the file and read/write to that lines instead of to memory. Line ordering is important for me since I will use line numbers as index. So I was wondering how I can replace lines in python, without moving around other lines (Actually, it is fine to move lines, as long as they return back to where I expect them to be).
I am trying to help a friend, which is worse than or equal to me in python. This code supposed to find biggest prime number, that divides given non-prime number. This code works for numbers until the numbers like 1 million, but after dead, my memory gets exhausted while trying to make numbers list.
# a comes from a user input
primes_upper_limit = (a+1) / 2
counter = 3L
numbers = list()
while counter <= primes_upper_limit:
numbers.append(counter)
counter += 2L
counter=3
i=0
half = (primes_upper_limit + 1) / 2 - 1
root = primes_upper_limit ** 0.5
while counter < root:
if numbers[i]:
j = int((counter*counter - 3) / 2)
numbers[j] = 0
while j < half:
numbers[j] = 0
j += counter
i += 1
counter = 2*i + 3
primes = [2] + [num for num in numbers if num]
for numb in reversed(primes):
if a % numb == 0:
print numb
break
Another Edit
What about wrinting different files for each index? for example a billion of files with long integer filenames, and just a number inside of the file?
You want to find the largest prime divisor of a. (Project Euler Question 3) Your current choice of algorithm and implementation do this by:
numbers
of all candidate primes in range (3 <= n <= sqrt(a), or (a+1)/2 as you currently do)numbers
list to get a list of primes {p} <= sqrt(a)My comments on this algorithm are below. Sieving and trial division are seriously not scalable algorithms, as Owen and I comment. For large a (billion, or trillion) you really should use NumPy. Anyway some comments on implementing this algorithm:
int(math.sqrt(a))
, not (a+1)/2 as you do?numbers
, then sieve it for primeness - the numbers list is not scalable. Just construct the list primes
directly. You can use while/for-loops and xrange(3,sqrt(a)+2,2)
(which gives you an iterator). As you mention xrange() overflows at 2**31L
, but combined with the sqrt observation, you can still successfully factor up to 2**62
generate_primes(a)
from find_largest_prime_divisor(a)
. Decomposition helps greatly.Here is my rewrite of your code, but performance still falls off in the billions (a > 10**11 +1) due to keeping the sieved list. We can use collections.deque instead of list for primes, to get a faster O(1) append() operation, but that's a minor optimization.
# Prime Factorization by trial division
from math import ceil,sqrt
from collections import deque
# Global list of primes (strictly we should use a class variable not a global)
#primes = deque()
primes = []
def is_prime(n):
"""Test whether n is divisible by any prime known so far"""
global primes
for p in primes:
if n%p == 0:
return False # n was divisible by p
return True # either n is prime, or divisible by some p larger than our list
def generate_primes(a):
"""Generate sieved list of primes (up to sqrt(a)) as we go"""
global primes
primes_upper_limit = int(sqrt(a))
# We get huge speedup by using xrange() instead of range(), so we have to seed the list with 2
primes.append(2)
print "Generating sieved list of primes up to", primes_upper_limit, "...",
# Consider prime candidates 2,3,5,7... in increasing increments of 2
#for number in [2] + range(3,primes_upper_limit+2,2):
for number in xrange(3,primes_upper_limit+2,2):
if is_prime(number): # use global 'primes'
#print "Found new prime", number
primes.append(number) # Found a new prime larger than our list
print "done"
def find_largest_prime_factor(x, debug=False):
"""Find all prime factors of x, and return the largest."""
global primes
# First we need the list of all primes <= sqrt(x)
generate_primes(x)
to_factor = x # running value of the remaining quantity we need to factor
largest_prime_factor = None
for p in primes:
if debug: print "Testing divisibility by", p
if to_factor%p != 0:
continue
if debug: print "...yes it is"
largest_prime_factor = p
# Divide out all factors of p in x (may have multiplicity)
while to_factor%p == 0:
to_factor /= p
# Stop when all factors have been found
if to_factor==1:
break
else:
print "Tested all primes up to sqrt(a), remaining factor must be a single prime > sqrt(a) :", to_factor
print "\nLargest prime factor of x is", largest_prime_factor
return largest_prime_factor