This document shows that a XGBoost API trained model can be sliced by following code:
from sklearn.datasets import make_classification
import xgboost as xgb
booster = xgb.train({
'num_parallel_tree': 4, 'subsample': 0.5, 'num_class': 3},
num_boost_round=num_boost_round, dtrain=dtrain)
sliced: xgb.Booster = booster[3:7]
I tried it and it worked.
Since XGBoost provides Scikit-Learn Wrapper interface, I tried something like this:
from xgboost import XGBClassifier
clf_xgb = XGBClassifier().fit(X_train, y_train)
clf_xgb_sliced: clf_xgb.Booster = booster[3:7]
But got following error:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-18-84155815d877> in <module>
----> 1 clf_xgb_sliced: clf_xgb.Booster = booster[3:7]
AttributeError: 'XGBClassifier' object has no attribute 'Booster'
Since XGBClassifier has no attribute 'Booster', is there any way to slice a Scikit-Learn Wrapper interface trained XGBClassifier(/XGBRegressor) model?
The problem is with the type hint you are giving clf_xgb.Booster
which does not match an existing argument. Try:
clf_xgb_sliced: xgb.Booster = clf_xgb.get_booster()[3:7]
instead.