The minimal example is rather short:
#include <iostream>
#include <array>
#include <type_traits>
struct Foo{
//template <class C>
//Foo(C col, typename std::enable_if<true,C>::type* = 0){
// std::cout << "optional argument constructor works" << std::endl;
//}
template <class C>
Foo(typename std::enable_if<true, C>::type col){
std::cout << "no optional argument constructor works NOT" << std::endl;
}
};
int main()
{
auto foo = Foo(std::array<bool,3>{0,0,1});
}
The first constructor works as expected. However the second constructor does not compile and I get
error: no matching function for call to ‘Foo::Foo(std::array)’
However the given explanation
note: template argument deduction/substitution failed
does not help, as std::enable_if<true, C>::type
should be C
and such the first argument in both constructors should look exactly the same to the compiler. I'm clearly missing something. Why is the compiler behaving differently and are there any other solution for constructors and enable_if, which do not use an optional argument?
Complete error message:
main.cpp:18:45: error: no matching function for call to ‘Foo::Foo(std::array)’
18 | auto foo = Foo(std::array<bool,3>{0,0,1});
| ^
main.cpp:11:5: note: candidate: ‘template Foo::Foo(typename std::enable_if::type)’
11 | Foo(typename std::enable_if<true, C>::type col){
| ^~~
main.cpp:11:5: note: template argument deduction/substitution failed:
main.cpp:18:45: note: couldn’t deduce template parameter ‘C’
18 | auto foo = Foo(std::array<bool,3>{0,0,1});
| ^
main.cpp:5:8: note: candidate: ‘constexpr Foo::Foo(const Foo&)’
5 | struct Foo{
| ^~~
main.cpp:5:8: note: no known conversion for argument 1 from ‘std::array’ to ‘const Foo&’
main.cpp:5:8: note: candidate: ‘constexpr Foo::Foo(Foo&&)’
main.cpp:5:8: note: no known conversion for argument 1 from ‘std::array’ to ‘Foo&&’
Template argument deduction does not work this way.
Suppose you have a template and a function using a type alias of that template:
template <typename T>
struct foo;
template <typename S>
void bar(foo<S>::type x) {}
When you call the function, eg foo(1)
then the compiler will not try all instantiations of foo
to see if any has a type
that matches the type of 1
. And it cannot do that because foo::type
is not necessarily unambiguous. It could be that different instantiations have the same foo<T>::type
:
template <>
struct foo<int> { using type = int; };
template <>
struct foo<double> { using type = int; };
Instead of even attempting this route and potentially resulting in ambiguity, foo<S>::type x
is a nondeduced context. For details see What is a nondeduced context?.