Random sample of 143 girl and 127 boys were selected from a large population.A measurement was taken of the haemoglobin level(measured in g/dl) of each child with the following result.
girl n=143 mean = 11.35 sd = 1.41 boys n=127 mean 11.01 sd =1.32 estimate the standard error of the difference between the sample means
In essence, we'd pool the standard errors by adding them. This implies that we´re answering the question: what is the vairation of the sampling distribution considering both samples?
SD = sqrt( (sd₁**2 / n₁) + (sd₂**2 / n₂) \
SD = sqrt( (1.41**2 / 143) + (1.32**2 / 127) ≈ 0.1662
Notice that the standrad deviation squared is simply the variance of each sample. As you can see, in our case the value is quite small, which indicates that the difference between sampled means doesn´t need to be that large for there to be a larger than expected difference between obervations.
We´d calculate the difference between means as 0.34 (or -0.34 depending on the nature of the question) and divide this difference by the standrad error to get a t-value. In our case 2.046 (or -2.046) indicates that the observed difference is 2.046 times larger than the average difference we would expect given the variation the variation that we measured AND the size of our sample.
However, we need to verify whether this observation is statistically significant by determining the t-critical value. This t-critical can be easily calculated by using a t-value chart: one needs to know the alpha (typically 0.05 unless otherwise stated), one needs to know the original alternative hypothesis (if it was something along the lines of there is a difference between genders then we would apply a two tailed distribution - if it was something along the lines of gender X has a hameglobin level larger/smaller than gender X then we would use a single tailed distribution).
If the t-value > t-critical then we would claim that the difference between means is statistically significant, thereby having sufficient evident to reject the null hypothesis. Alternatively, if t-value < t-critical, we would not have statistically significant evidence against the null hypothesis, thus we would fail to reject the null hypothesis.