Search code examples
integerjuliamultiplicationbigintegerint128

Multiplication of 2 positive numbers in Julia gives a negative product


In Julia 1.7.2 multiplication of 3037000691 and 3037000693 returns the negative product -9223370870501072753. The product I expected is 9223373203208478863.

function m(a::BigInt, b::BigInt)::BigInt
    a * b
end

This function gives the same negative result.

Any ideas on how to get the correct answer in Julia 1.7.2 to 3037000691 * 3037000693 ?

P.S.
I did run into this issue doing some math on (big) twin prime numbers.


Solution

  • Try calling your function like this:

    julia> m(BigInt(3037000691), BigInt(3037000693))
    9223373203208478863
    

    Or changing your function to any of the following:

    # TL;DR: Use this it is the fastest.
    function m1(a::Int64, b::Int64)::Int128
        Int128(a) * Int128(b)
    end
    
    function m2(a, b)::BigInt
        BigInt(a) * BigInt(b)
    end
    
    function m3(a::Int64, b::Int64)::BigInt
        BigInt(a) * BigInt(b)
    end
    

    Note you technically only need to cast either a or b, but I think that decreases readability.

    Example usage:

    julia> m1(3037000691, 3037000693)
    9223373203208478863
    julia> m2(3037000691, 3037000693)
    9223373203208478863
    julia> m3(3037000691, 3037000693)
    9223373203208478863
    

    In this case, you should use m1, which uses Int128s only since it is not possible to multiply two Int64 values to overflow an Int128:

    julia> m1(9223372036854775807, 9223372036854775807) # Max val for Int64 squared.
    85070591730234615847396907784232501249
    

    In general, not using BigInt's whenever possible and being explicit about the types in your functions will result in significant performance gains:

    julia> using BenchmarkTools
    
    julia> @benchmark m1(3037000691, 3037000693)
    BenchmarkTools.Trial: 10000 samples with 1000 evaluations.
     Range (min … max):  0.049 ns … 7.780 ns  ┊ GC (min … max): 0.00% … 0.00%
     Time  (median):     0.060 ns             ┊ GC (median):    0.00%
     Time  (mean ± σ):   0.064 ns ± 0.078 ns  ┊ GC (mean ± σ):  0.00% ± 0.00%
    
       ▁          █         ▃▆▃         ▂                       ▁
      ▆█▆▁▁▁▁▁▁▁▁▁█▁▁▁▁▁▁▁▁▁███▁▁▁▁▁▁▁▁▁█▁▁▁▁▁▁▁▁▁▄▆▄▁▁▁▁▁▁▁▁▁█ █
      0.049 ns    Histogram: log(frequency) by time      0.1 ns <
    
     Memory estimate: 0 bytes, allocs estimate: 0.
    
    julia> @benchmark m2(3037000691, 3037000693)
    BenchmarkTools.Trial: 10000 samples with 199 evaluations.
     Range (min … max):  413.317 ns …  2.404 ms  ┊ GC (min … max):  0.00% … 64.79%
     Time  (median):     507.080 ns              ┊ GC (median):     0.00%
     Time  (mean ± σ):     1.957 μs ± 42.299 μs  ┊ GC (mean ± σ):  26.95% ±  1.29%
    
      ▇▆█▇▆▅▅▄▄▃▂▂▁▂▁                                              ▂
      █████████████████▇█▇▆▆▆▅▆▄▄▆▄▅▅▁▄▄▅▄▄▁▃▄▄▄▄▃▃▁▄▁▄▃▃▄▄▁▃▄▁▄▄▄ █
      413 ns        Histogram: log(frequency) by time      2.39 μs <
    
     Memory estimate: 128 bytes, allocs estimate: 7.
    
    julia> @benchmark m3(3037000691, 3037000693)
    BenchmarkTools.Trial: 10000 samples with 199 evaluations.
     Range (min … max):  414.774 ns …  2.487 ms  ┊ GC (min … max):  0.00% … 64.53%
     Time  (median):     496.080 ns              ┊ GC (median):     0.00%
     Time  (mean ± σ):     1.895 μs ± 41.026 μs  ┊ GC (mean ± σ):  24.60% ±  1.20%
    
      ▄ ▂▁ ▂█▄                                                      
      █▄██▇████▇▇▇▄▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▂▂▁▂▂ ▃
      415 ns          Histogram: frequency by time         1.14 μs <
    
     Memory estimate: 128 bytes, allocs estimate: 7.