I want to fill in missing values for a data.frame based on a period of time within groups of ID.
For the latest registration_dat within the same ID group, I want to fill in with previous values in the ID group but only if the registration_dat is within 1 year of the latest registration_dat in the ID group.
Sample version of my data:
ID registration_dat value1 value2
1 2020-03-04 NA NA
1 2019-05-06 33 25
1 2019-01-02 32 21
3 2021-10-31 NA NA
3 2018-10-12 33 NA
3 2018-10-10 25 35
4 2020-01-02 NA NA
4 2019-10-31 32 83
4 2019-09-20 33 56
8 2019-12-12 NA NA
8 2019-10-31 NA 43
8 2019-08-12 32 46
Desired output:
ID registration_dat value1 value2
1 2020-03-04 33 25
1 2019-05-06 33 25
1 2019-01-02 32 21
3 2021-10-31 NA NA
3 2018-10-12 33 NA
3 2018-10-10 25 35
4 2020-01-02 32 83
4 2019-10-31 32 83
4 2019-09-20 33 56
8 2019-12-12 32 43
8 2019-10-31 NA 43
8 2019-08-12 32 46
I am later filtering the data so that i get one unique ID based on the latest registration date and I want this row to have as little missing data as possible hence I want to do this for all columns in the dataframe. However I do not want NA values being filled in by values in previous dates if its more than 1 year apart from the latest registration date. My dataframe has 14 columns and 3 million+ rows so I would need it to work on a much bigger data.frame than the one shown as an example.
I'd appreciate any ideas!
You could make a small function (f
, below) to handle each value column.
rowid
(this is only to retain your original order)dat <- dat %>%
mutate(rowid = row_number()) %>%
arrange(registration_dat) %>%
group_by(ID)
df
and val
column, and returns and updated df
with val
fixedf <- function(df, val) {
bind_rows(
df %>% filter(is.na({{val}}) & row_number()!=n()),
df %>% filter(!is.na({{val}}) | row_number()==n()) %>%
mutate({{val}} := if_else(is.na({{val}}) & registration_dat-lag(registration_dat)<365, lag({{val}}),{{val}}))
)
}
dat = f(dat,value1)
dat = f(dat,value2)
dat %>% arrange(rowid) %>% select(-rowid)
Output:
ID registration_dat value1 value2
<int> <date> <int> <int>
1 1 2020-03-04 33 25
2 1 2019-05-06 33 25
3 1 2019-01-02 32 21
4 3 2021-10-31 NA NA
5 3 2018-10-12 33 NA
6 3 2018-10-10 25 35
7 4 2020-01-02 32 83
8 4 2019-10-31 32 83
9 4 2019-09-20 33 56
10 8 2019-12-12 32 46
11 8 2019-10-31 NA 43
12 8 2019-08-12 32 46
The OP wants the final row (i.e the last registration_dat) per ID. With 3 million rows and 14 value columns, I would use data.table
and do something like this:
library(data.table)
f <- function(df) {
df = df[df[1,registration_dat]-registration_dat<=365]
df[1,value:=df[2:.N][!is.na(value)][1,value]][1]
}
dcast(
melt(setDT(dat), id=c("ID", "registration_dat"))[order(-registration_dat),f(.SD), by=.(ID,variable)],
ID+registration_dat~variable, value.var="value"
)
Output:
ID registration_dat value1 value2
<int> <Date> <int> <int>
1: 1 2020-03-04 33 25
2: 3 2021-10-31 NA NA
3: 4 2020-01-02 32 83
4: 8 2019-12-12 32 43