I have a list of the coefficient to degree 1 polynomials, with a[i][0]*x^1 + a[i][1]
a = np.array([[ 1. , 77.48514702],
[ 1. , 0. ],
[ 1. , 2.4239275 ],
[ 1. , 1.21848739],
[ 1. , 0. ],
[ 1. , 1.18181818],
[ 1. , 1.375 ],
[ 1. , 2. ],
[ 1. , 2. ],
[ 1. , 2. ]])
And running into issues with the following operation,
np.polydiv(reduce(np.polymul, a), a[0])[0] != reduce(np.polymul, a[1:])
where
In [185]: reduce(np.polymul, a[1:])
Out[185]:
array([ 1. , 12.19923307, 63.08691612, 179.21045388,
301.91486027, 301.5756213 , 165.35814595, 38.39582615,
0. , 0. ])
and
In [186]: np.polydiv(reduce(np.polymul, a), a[0])[0]
Out[186]:
array([ 1.00000000e+00, 1.21992331e+01, 6.30869161e+01, 1.79210454e+02,
3.01914860e+02, 3.01575621e+02, 1.65358169e+02, 3.83940472e+01,
1.37845155e-01, -1.06809521e+01])
First of all the remainder of np.polydiv(reduce(np.polymul, a), a[0])
is way bigger than 0, 827.61514239
to be exact, and secondly, the last two terms to quotient should be 0, but way larger from 0. 1.37845155e-01, -1.06809521e+01
.
I'm wondering what are my options to improve the accuracy?
There is a slightly complicated way to keep the product first and then divide structure.
By first employ n
points and evaluate on a
.
xs = np.linspace(0, 1., 10)
ys = np.array([np.prod(list(map(lambda r: np.polyval(r, x), a))) for x in xs])
then do the division on ys
instead of coefficients.
ys = ys/np.array([np.polyval(a[0], x) for x in xs])
finally recover the coefficient using polynomial interpolation with xs
and ys
from scipy.interpolate import lagrange
lagrange(xs, ys)
b = a[:,::-1]
np.polydiv(reduce(np.polymul, b), b[0])[0][::-1]