I have a dataframe that looks like this
id | human_id |
---|---|
1 | ('apples', '2022-12-04', 'a5ted') |
2 | ('bananas', '2012-2-14') |
3 | ('2012-2-14', 'reda21', 'ss') |
.. | .. |
I would like a "pythonic" way to have such output
id | human_id | col1 | col2 | col3 |
---|---|---|---|---|
1 | ('apples', '2022-12-04', 'a5ted') | apples | 2022-12-04 | a5ted |
2 | ('bananas', '2012-2-14') | bananas | 2022-12-04 | np.NaN |
3 | ('2012-2-14', 'reda21', 'ss') | 2012-2-14 | reda21 | ss |
import pandas as pd
df['a'], df['b'], df['c'] = df.human_id.str
The code I have tried give me error:
ValueError: not enough values to unpack (expected 2, got 1) Python
How can I split the values in tuple to be in columns?
Thank you.
You can do it this way. It will just put None in places where it couldn't find the values. You can then append the df1 to df.
d = {'id': [1,2,3],
'human_id': ["('apples', '2022-12-04', 'a5ted')",
"('bananas', '2012-2-14')",
"('2012-2-14', 'reda21', 'ss')"
]}
df = pd.DataFrame(data=d)
list_human_id = tuple(list(df['human_id']))
newList = []
for val in listh:
newList.append(eval(val))
df1 = pd.DataFrame(newList, columns=['col1', 'col2', 'col3'])
print(df1)
Output
col1 col2 col3
0 apples 2022-12-04 a5ted
1 bananas 2012-2-14 None
2 2012-2-14 reda21 ss